Planelles Daniel, Hortal Enrique, Costa Alvaro, Ubeda Andrés, Iáez Eduardo, Azorín José M
Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Avda. de la Universidad S/N, 03202, Elche (Alicante), Spain.
Sensors (Basel). 2014 Sep 29;14(10):18172-86. doi: 10.3390/s141018172.
This paper presents a methodology to detect the intention to make a reaching movement with the arm in healthy subjects before the movement actually starts. This is done by measuring brain activity through electroencephalographic (EEG) signals that are registered by electrodes placed over the scalp. The preparation and performance of an arm movement generate a phenomenon called event-related desynchronization (ERD) in the mu and beta frequency bands. A novel methodology to characterize this cognitive process based on three sums of power spectral frequencies involved in ERD is presented. The main objective of this paper is to set the benchmark for classifiers and to choose the most convenient. The best results are obtained using an SVM classifier with around 72% accuracy. This classifier will be used in further research to generate the control commands to move a robotic exoskeleton that helps people suffering from motor disabilities to perform the movement. The final aim is that this brain-controlled robotic exoskeleton improves the current rehabilitation processes of disabled people.
本文提出了一种方法,用于在健康受试者实际开始手臂伸展运动之前检测其进行该运动的意图。这是通过测量头皮上放置的电极所记录的脑电图(EEG)信号来实现的。手臂运动的准备和执行会在μ和β频段产生一种称为事件相关去同步化(ERD)的现象。本文提出了一种基于ERD中涉及的三个功率谱频率总和来表征这一认知过程的新方法。本文的主要目标是为分类器设定基准并选择最便捷的分类器。使用支持向量机(SVM)分类器可获得约72%的准确率,从而得到最佳结果。该分类器将用于进一步的研究,以生成控制命令来驱动机器人外骨骼,帮助患有运动障碍的人进行运动。最终目标是这种脑控机器人外骨骼能够改善残疾人当前的康复过程。