Suppr超能文献

扩展基因编辑工具包:锌指核酸酶、转录激活样效应因子核酸酶和CRISPR-Cas9。

Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9.

作者信息

Gupta Rajat M, Musunuru Kiran

出版信息

J Clin Invest. 2014 Oct;124(10):4154-61. doi: 10.1172/JCI72992. Epub 2014 Oct 1.

Abstract

The past decade has been one of rapid innovation in genome-editing technology. The opportunity now exists for investigators to manipulate virtually any gene in a diverse range of cell types and organisms with targeted nucleases designed with sequence-specific DNA-binding domains. The rapid development of the field has allowed for highly efficient, precise, and now cost-effective means by which to generate human and animal models of disease using these technologies. This review will outline the recent development of genome-editing technology, culminating with the use of CRISPR-Cas9 to generate novel mammalian models of disease. While the road to using this same technology for treatment of human disease is long, the pace of innovation over the past five years and early successes in model systems build anticipation for this prospect.

摘要

过去十年是基因组编辑技术快速创新的十年。现在研究人员有机会利用设计有序列特异性DNA结合结构域的靶向核酸酶,在多种细胞类型和生物体中操纵几乎任何基因。该领域的快速发展使得利用这些技术生成人类和动物疾病模型有了高效、精确且如今具有成本效益的方法。本综述将概述基因组编辑技术的最新进展,最终聚焦于使用CRISPR-Cas9生成新型哺乳动物疾病模型。虽然将这项技术用于治疗人类疾病的道路漫长,但过去五年的创新步伐以及模型系统的早期成功让人对这一前景充满期待。

相似文献

1
Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9.
J Clin Invest. 2014 Oct;124(10):4154-61. doi: 10.1172/JCI72992. Epub 2014 Oct 1.
2
The CRISPR/Cas9 system for plant genome editing and beyond.
Biotechnol Adv. 2015 Jan-Feb;33(1):41-52. doi: 10.1016/j.biotechadv.2014.12.006. Epub 2014 Dec 20.
3
Origins of Programmable Nucleases for Genome Engineering.
J Mol Biol. 2016 Feb 27;428(5 Pt B):963-89. doi: 10.1016/j.jmb.2015.10.014. Epub 2015 Oct 23.
4
5
Plant genome engineering in full bloom.
Trends Plant Sci. 2014 May;19(5):284-7. doi: 10.1016/j.tplants.2014.02.014. Epub 2014 Mar 24.
6
Genome Editing and Its Applications in Model Organisms.
Genomics Proteomics Bioinformatics. 2015 Dec;13(6):336-44. doi: 10.1016/j.gpb.2015.12.001. Epub 2016 Jan 4.
8
Basics of genome editing technology and its application in livestock species.
Reprod Domest Anim. 2017 Aug;52 Suppl 3:4-13. doi: 10.1111/rda.13012.
9
Determining the specificities of TALENs, Cas9, and other genome-editing enzymes.
Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.

引用本文的文献

2
CATS: a bioinformatic tool for automated Cas9 nucleases activity comparison in clinically relevant contexts.
Front Genome Ed. 2025 Jul 24;7:1571023. doi: 10.3389/fgeed.2025.1571023. eCollection 2025.
3
Recent applications, future perspectives, and limitations of the CRISPR-Cas system.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102634. doi: 10.1016/j.omtn.2025.102634. eCollection 2025 Sep 9.
4
Mechanistic study of the immune defense function of the CRISPR1-Cas system in .
Virulence. 2025 Dec;16(1):2530665. doi: 10.1080/21505594.2025.2530665. Epub 2025 Jul 15.
6
Allogeneic CART progress: platforms, current progress and limitations.
Front Immunol. 2025 Jun 12;16:1557157. doi: 10.3389/fimmu.2025.1557157. eCollection 2025.
7
Powering new therapeutics with precision mitochondrial editing.
Nat Biotechnol. 2025 Jun;43(6):831-832. doi: 10.1038/s41587-025-02693-x.
8
Gene Editing for Duchenne Muscular Dystrophy: From Experimental Models to Emerging Therapies.
Degener Neurol Neuromuscul Dis. 2025 Apr 12;15:17-40. doi: 10.2147/DNND.S495536. eCollection 2025.
9
Exploring Advanced CRISPR Delivery Technologies for Therapeutic Genome Editing.
Small Sci. 2024 Jul 25;4(10):2400192. doi: 10.1002/smsc.202400192. eCollection 2024 Oct.
10
Therapeutic Targeting in Ovarian Cancer: Nano-Enhanced CRISPR/Cas9 Gene Editing and Drug Combination Therapy.
Int J Nanomedicine. 2025 Mar 30;20:3907-3931. doi: 10.2147/IJN.S507688. eCollection 2025.

本文引用的文献

3
Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9253-8. doi: 10.1073/pnas.1323941111. Epub 2014 Jun 9.
4
Targeted genome editing in human repopulating haematopoietic stem cells.
Nature. 2014 Jun 12;510(7504):235-240. doi: 10.1038/nature13420. Epub 2014 May 28.
5
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing.
Nat Biotechnol. 2014 Jun;32(6):569-76. doi: 10.1038/nbt.2908. Epub 2014 Apr 25.
6
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.
Nat Biotechnol. 2014 Jun;32(6):577-582. doi: 10.1038/nbt.2909. Epub 2014 Apr 25.
7
High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.
Nature. 2014 May 22;509(7501):487-91. doi: 10.1038/nature13166. Epub 2014 Apr 9.
8
Targeted genome editing of sweet orange using Cas9/sgRNA.
PLoS One. 2014 Apr 7;9(4):e93806. doi: 10.1371/journal.pone.0093806. eCollection 2014.
9
Efficient and heritable gene targeting in tilapia by CRISPR/Cas9.
Genetics. 2014 Jun;197(2):591-9. doi: 10.1534/genetics.114.163667. Epub 2014 Apr 7.
10
Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.
Nat Biotechnol. 2014 Jun;32(6):551-3. doi: 10.1038/nbt.2884. Epub 2014 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验