Suppr超能文献

用于3D细胞微环境的微尺度筛选系统:平台、进展与挑战。

Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges.

作者信息

Montanez-Sauri Sara I, Beebe David J, Sung Kyung Eun

机构信息

Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Cell Mol Life Sci. 2015 Jan;72(2):237-49. doi: 10.1007/s00018-014-1738-5. Epub 2014 Oct 2.

Abstract

The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g., spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high-throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments.

摘要

利用更类似体内的三维(3D)微环境来研究细胞的兴趣日益增加,这就需要具有增强功能和更高通量的先进3D筛选平台。能够更好地模拟体内微环境并提高通量的3D筛选平台,将能更深入地了解微环境的复杂性和异质性。这些平台还能在生理相关条件下更好地预测潜在药物的毒性和疗效。传统的3D培养模型(如转瓶、旋转振荡装置、非粘附表面、聚合物)是为了创建3D多细胞结构而开发的。然而,这些传统系统需要大量的试剂和细胞,并且与高通量筛选(HTS)系统不兼容。微尺度技术实现了3D培养的小型化,并允许对各种条件进行高效筛选。本综述将讨论用于在3D微环境中筛选细胞的微尺度培养系统的发展、最具影响力的研究成果以及当前的优势和挑战。

相似文献

1
Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges.
Cell Mol Life Sci. 2015 Jan;72(2):237-49. doi: 10.1007/s00018-014-1738-5. Epub 2014 Oct 2.
2
High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures.
Biosensors (Basel). 2015 Dec 14;5(4):768-90. doi: 10.3390/bios5040768.
3
Medium to high throughput screening: microfabrication and chip-based technology.
Adv Exp Med Biol. 2012;745:181-209. doi: 10.1007/978-1-4614-3055-1_11.
4
Microprinting of liver micro-organ for drug metabolism study.
Methods Mol Biol. 2011;671:219-38. doi: 10.1007/978-1-59745-551-0_13.
5
An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation.
Int J Mol Sci. 2023 Jan 5;24(2):1006. doi: 10.3390/ijms24021006.
6
Microfluidic cell chips for high-throughput drug screening.
Bioanalysis. 2016 May;8(9):921-37. doi: 10.4155/bio-2016-0028. Epub 2016 Apr 13.
7
Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.
Biofabrication. 2011 Sep;3(3):034101. doi: 10.1088/1758-5082/3/3/034101. Epub 2011 Jul 1.
8
Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation.
Biosensors (Basel). 2015 Oct 26;5(4):647-63. doi: 10.3390/bios5040647.
9
Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
Biotechnol J. 2014 Jul;9(7):971-9. doi: 10.1002/biot.201300559. Epub 2014 Jun 12.
10
Screening the cellular microenvironment: a role for microfluidics.
IEEE Rev Biomed Eng. 2008;1(1):75-93. doi: 10.1109/RBME.2008.2008241. Epub 2008 Nov 5.

引用本文的文献

1
A promising breakthrough in pancreatic cancer research: The potential of spheroids as 3D models.
Bioimpacts. 2024 May 6;15:30241. doi: 10.34172/bi.30241. eCollection 2025.
2
Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration.
NPJ Parkinsons Dis. 2024 Oct 20;10(1):189. doi: 10.1038/s41531-024-00799-8.
3
Magnetically Integrated Tumor-Vascular Interface System to Mimic Pro-angiogenic Endothelial Dysregulations for On-Chip Drug Testing.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47075-47088. doi: 10.1021/acsami.4c01766. Epub 2024 Aug 28.
4
3D culture applied to reproduction in females: possibilities and perspectives.
Anim Reprod. 2024 Mar 8;21(1):e20230039. doi: 10.1590/1984-3143-AR2023-0039. eCollection 2024.
5
Recent Advances in Organ-on-Chips Integrated with Bioprinting Technologies for Drug Screening.
Adv Healthc Mater. 2023 Aug;12(20):e2203172. doi: 10.1002/adhm.202203172. Epub 2023 May 14.
6
Application and prospects of high-throughput screening for neurogenesis.
World J Stem Cells. 2022 Jun 26;14(6):393-419. doi: 10.4252/wjsc.v14.i6.393.
7
Long-term cultured microvascular networks on chip for tumor vascularization research and drug testing.
Biomicrofluidics. 2022 Jul 12;16(4):044101. doi: 10.1063/5.0090027. eCollection 2022 Jul.
8
Multicellular Tumor Spheroids in Nanomedicine Research: A Perspective.
Front Med Technol. 2022 Jun 15;4:909943. doi: 10.3389/fmedt.2022.909943. eCollection 2022.
9
An Easy-to-Fabricate Microfluidic Shallow Trench Induced Three-Dimensional Cell Culturing and Imaging (STICI3D) Platform.
ACS Omega. 2022 Mar 2;7(10):8281-8293. doi: 10.1021/acsomega.1c05118. eCollection 2022 Mar 15.
10
Spontaneous Formation of 3D Breast Cancer Tissues on Electrospun Chitosan/Poly(ethylene oxide) Nanofibrous Scaffolds.
ACS Omega. 2022 Jan 5;7(2):2114-2126. doi: 10.1021/acsomega.1c05646. eCollection 2022 Jan 18.

本文引用的文献

1
Streamlining gene expression analysis: integration of co-culture and mRNA purification.
Integr Biol (Camb). 2014 Feb;6(2):224-31. doi: 10.1039/c3ib40136g.
2
Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures.
Anal Chem. 2013 Sep 3;85(17):8085-94. doi: 10.1021/ac400161j. Epub 2013 Aug 16.
3
A contact line pinning based microfluidic platform for modelling physiological flows.
Lab Chip. 2013 Oct 7;13(19):3876-85. doi: 10.1039/c3lc50489a.
5
Microfluidic heart on a chip for higher throughput pharmacological studies.
Lab Chip. 2013 Sep 21;13(18):3599-608. doi: 10.1039/c3lc50350j.
6
Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.
Lab Chip. 2013 Sep 21;13(18):3578-87. doi: 10.1039/c3lc50402f.
7
Engineering of functional, perfusable 3D microvascular networks on a chip.
Lab Chip. 2013 Apr 21;13(8):1489-500. doi: 10.1039/c3lc41320a.
8
Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips.
J Pharm Sci. 2013 Sep;102(9):3264-76. doi: 10.1002/jps.23466. Epub 2013 Feb 19.
10
Magnetic force-based cell patterning for evaluation of the effect of stromal fibroblasts on invasive capacity in 3D cultures.
Biosens Bioelectron. 2013 Apr 15;42:300-7. doi: 10.1016/j.bios.2012.09.067. Epub 2012 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验