Suppr超能文献

激光刻写石墨烯为打印新一代一次性电化学传感器提供了契机。

Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors.

作者信息

Griffiths Katie, Dale Carl, Hedley John, Kowal Matthew D, Kaner Richard B, Keegan Neil

机构信息

Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.

出版信息

Nanoscale. 2014 Nov 21;6(22):13613-22. doi: 10.1039/c4nr04221b.

Abstract

Graphene application within electrochemical sensing has been widely reported, but mainly as a composite, which adds summative effects to an underlying electrode. In this work we report the use of laser-scribed graphene as a distinct electrode patterned on a non-conducting flexible substrate. The laser-scribed graphene electrode compared favourably to established carbon macroelectrodes when evaluating both inner sphere and outer sphere redox probes, providing promise of extensive utility as an electrochemical sensor. The laser-scribed graphene electrode demonstrated the fastest heterogeneous electron transfer rate of all the electrodes evaluated with a k(0) of 0.02373 cm s(-1) for potassium ferricyanide, which exceeds commercially available edge plane pyrolytic graphite at 0.00260 cm s(-1), basal plane pyrolytic graphite at 0.00033 cm s(-1) and the very slow and effectively irreversible electrochemistry observed using single layer graphene. Finally and most significantly, a proof of principle system was fabricated using the laser-scribed graphene as working electrode, counter electrode and underlying base for the Ag/AgCl reference electrode, all in situ on the same planar flexible substrate, removing the requirement of macroscale external electrodes. The planar three electrode format operated with the same optimal electrode characteristics. Furthermore, the fabrication is inexpensive, scalable and compatible with a disposable biosensor format, considerably widening the potential applications in electrochemical bio-sensing for laser-scribed graphene.

摘要

石墨烯在电化学传感中的应用已有广泛报道,但主要是作为一种复合材料,为底层电极增添累加效应。在本工作中,我们报道了使用激光刻写石墨烯作为在非导电柔性基底上图案化的独特电极。在评估内球和外球氧化还原探针时,激光刻写石墨烯电极与已有的碳宏观电极相比具有优势,这为其作为电化学传感器的广泛应用提供了前景。在所评估的所有电极中,激光刻写石墨烯电极展示出最快的异质电子转移速率,对于铁氰化钾其k(0)为0.02373 cm s(-1),超过了商业可得的边缘平面热解石墨(0.00260 cm s(-1))、基底平面热解石墨(0.00033 cm s(-1))以及单层石墨烯所观察到的非常缓慢且实际上不可逆的电化学过程。最后且最为重要的是,构建了一个原理验证系统,使用激光刻写石墨烯作为工作电极、对电极以及Ag/AgCl参比电极的底层基底,所有这些都原位在同一平面柔性基底上,消除了对宏观外部电极的需求。平面三电极形式具有相同的最佳电极特性。此外,该制造方法成本低廉、可扩展且与一次性生物传感器形式兼容,极大地拓宽了激光刻写石墨烯在电化学生物传感中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验