Ibáñez-Gimeno Pere, Galtés Ignasi, Manyosa Joan, Malgosa Assumpció, Jordana Xavier
Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain.
Servei de Patologia Forense, Unitat d'Antropologia Forense, Institut de Medicina Legal de Catalunya, Ciutat de la Justícia, Gran Via de les Corts Catalanes 111, Edifici G, 08075 Barcelona, Catalonia, Spain; Unitat de Medicina Legal i Forense, Departament de Psiquiatria i de Medicina Legal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain.
J Hum Evol. 2014 Nov;76:165-76. doi: 10.1016/j.jhevol.2014.08.004. Epub 2014 Sep 30.
The greatly diversified locomotor behaviors in the Hominoidea impose different mechanical requirements in the upper limb of each species. As forearm rotation has a major role in locomotion, the skeletal structures involved in this movement may display differences among taxa that reflect functional adaptations. To test this, we use a biomechanical model that quantifies the rotatory capacity of pronator teres (rotational efficiency) from skeletal measurements. Using a large sample of hominoids, we aim to identify the morphological adaptations that confer differences in the mechanics of forearm motion and to assess the functional advantage of these adaptations. Forearm positions along the pronation-supination range where rotational efficiency is maximal depend on the orientation of the humeral medial epicondyle and differ among taxa. Our results indicate that these are related to locomotor mode. Knuckle-walkers exhibit a medial epicondyle more posteriorly directed, which, in elbow angles close to extension, causes rotational efficiency to be maximal in pronated positions of the forearm. Species with a significant amount of arboreal locomotion, such as vertical climbing, i.e., Pongo spp., Pan troglodytes and Gorilla gorilla, display more proximally oriented epicondyles, which, in elbow flexion, leads to maximum rotational efficiencies in supinated positions of the forearm. Hylobatidae, with the less posteriorly and proximally oriented epicondyle, show their maximum rotational efficiencies closer to the forearm neutral position throughout most of the flexion-extension range, which may be linked to brachiation in this taxon. In humans, the epicondylar orientation and thus the positions of the maximum rotational efficiencies fall between arboreal and terrestrial hominoids. This may be related to the enhanced manipulative skills of the upper limb. In conclusion, the current analysis indicates that the orientation of the humeral medial epicondyle is linked to the locomotor habits of extant hominoids and therefore can be used for locomotor inferences in fossil taxa.
人猿总科中极其多样的运动行为对每个物种的上肢提出了不同的机械需求。由于前臂旋转在运动中起主要作用,参与该运动的骨骼结构可能在不同分类单元之间表现出差异,这些差异反映了功能适应性。为了验证这一点,我们使用了一个生物力学模型,该模型通过骨骼测量来量化旋前圆肌的旋转能力(旋转效率)。我们以大量人猿样本为研究对象,旨在确定导致前臂运动力学差异的形态学适应性特征,并评估这些适应性特征的功能优势。前臂在旋前 - 旋后范围内旋转效率最高时的位置取决于肱骨内侧髁的方向,并且在不同分类单元之间存在差异。我们的结果表明,这些差异与运动方式有关。指关节行走者的内侧髁更向后指向,在肘关节接近伸展时,这会使前臂旋前位置的旋转效率达到最大值。有大量树栖运动的物种,如垂直攀爬的物种,即猩猩属、黑猩猩和大猩猩,其髁更接近近端定向,在肘关节屈曲时,这会使前臂旋后位置的旋转效率达到最大值。长臂猿科的内侧髁在前后和近端方向上的定位较小,在大部分屈伸范围内,它们的最大旋转效率更接近前臂中立位置,这可能与该分类单元的臂行运动有关。在人类中,髁的方向以及最大旋转效率的位置介于树栖和陆生猿类之间。这可能与上肢增强的操作技能有关。总之,当前的分析表明,肱骨内侧髁的方向与现存猿类的运动习惯有关,因此可用于推断化石分类单元的运动方式。