Suppr超能文献

整合膜蛋白插入与折叠的机制。

Mechanisms of integral membrane protein insertion and folding.

作者信息

Cymer Florian, von Heijne Gunnar, White Stephen H

机构信息

Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm.

Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden.

出版信息

J Mol Biol. 2015 Mar 13;427(5):999-1022. doi: 10.1016/j.jmb.2014.09.014. Epub 2014 Sep 30.

Abstract

The biogenesis, folding, and structure of α-helical membrane proteins (MPs) are important to understand because they underlie virtually all physiological processes in cells including key metabolic pathways, such as the respiratory chain and the photosystems, as well as the transport of solutes and signals across membranes. Nearly all MPs require translocons--often referred to as protein-conducting channels--for proper insertion into their target membrane. Remarkable progress toward understanding the structure and functioning of translocons has been made during the past decade. Here, we review and assess this progress critically. All available evidence indicates that MPs are equilibrium structures that achieve their final structural states by folding along thermodynamically controlled pathways. The main challenge for cells is the targeting and membrane insertion of highly hydrophobic amino acid sequences. Targeting and insertion are managed in cells principally by interactions between ribosomes and membrane-embedded translocons. Our review examines the biophysical and biological boundaries of MP insertion and the folding of polytopic MPs in vivo. A theme of the review is the under-appreciated role of basic thermodynamic principles in MP folding and assembly. Thermodynamics not only dictates the final folded structure but also is the driving force for the evolution of the ribosome-translocon system of assembly. We conclude the review with a perspective suggesting a new view of translocon-guided MP insertion.

摘要

α-螺旋膜蛋白(MPs)的生物合成、折叠及结构对于理解细胞内几乎所有生理过程至关重要,这些生理过程包括关键代谢途径,如呼吸链和光系统,以及溶质和信号跨膜运输。几乎所有的膜蛋白都需要转运体(通常称为蛋白质传导通道)才能正确插入其靶膜。在过去十年中,人们在理解转运体的结构和功能方面取得了显著进展。在此,我们对这一进展进行批判性的回顾和评估。所有现有证据表明,膜蛋白是平衡结构,它们通过沿着热力学控制的途径折叠来达到其最终结构状态。细胞面临的主要挑战是高度疏水氨基酸序列的靶向和膜插入。在细胞中,靶向和插入主要通过核糖体与膜嵌入转运体之间的相互作用来实现。我们的综述探讨了膜蛋白插入的生物物理和生物学界限以及多跨膜蛋白在体内的折叠。综述的一个主题是基本热力学原理在膜蛋白折叠和组装中未得到充分重视的作用。热力学不仅决定了最终的折叠结构,也是核糖体-转运体组装系统进化的驱动力。我们在综述结尾提出了一个观点,为转运体引导的膜蛋白插入提供了新的视角。

相似文献

1
Mechanisms of integral membrane protein insertion and folding.
J Mol Biol. 2015 Mar 13;427(5):999-1022. doi: 10.1016/j.jmb.2014.09.014. Epub 2014 Sep 30.
4
The Ribosome-Sec61 Translocon Complex Forms a Cytosolically Restricted Environment for Early Polytopic Membrane Protein Folding.
J Biol Chem. 2015 Nov 27;290(48):28944-52. doi: 10.1074/jbc.M115.672261. Epub 2015 Aug 7.
5
Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14640-5. doi: 10.1073/pnas.1306787110. Epub 2013 Aug 19.
6
An ER translocon for multi-pass membrane protein biogenesis.
Elife. 2020 Aug 21;9:e56889. doi: 10.7554/eLife.56889.
7
How translocons select transmembrane helices.
Annu Rev Biophys. 2008;37:23-42. doi: 10.1146/annurev.biophys.37.032807.125904.
8
Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane.
Prog Nucleic Acid Res Mol Biol. 2001;66:107-57. doi: 10.1016/s0079-6603(00)66028-2.
9
Sequence-dependent scale for translocon-mediated insertion of interfacial helices in membranes.
Sci Adv. 2025 Feb 21;11(8):eads6804. doi: 10.1126/sciadv.ads6804. Epub 2025 Feb 19.
10
Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins.
Biochem Soc Trans. 2018 Oct 19;46(5):1355-1366. doi: 10.1042/BST20170424. Epub 2018 Sep 6.

引用本文的文献

1
3
Resurrection of the Helical Hairpin Hypothesis for Understanding Coronavirus Fusion.
J Membr Biol. 2025 Jun 24. doi: 10.1007/s00232-025-00350-7.
5
Non-invasive tools for analysis of plasma membrane protein topology in living cells.
Methods. 2025 Jul;239:111-126. doi: 10.1016/j.ymeth.2025.04.007. Epub 2025 Apr 20.
6
Cotranslational membrane insertion of the voltage-sensitive K channel KvAP.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2412492122. doi: 10.1073/pnas.2412492122. Epub 2025 Mar 31.
7
Not All Bacterial Outer-Membrane Proteins Are β-Barrels.
MicroPubl Biol. 2025 Feb 7;2025. doi: 10.17912/micropub.biology.001394. eCollection 2025.
8
Sequence-dependent scale for translocon-mediated insertion of interfacial helices in membranes.
Sci Adv. 2025 Feb 21;11(8):eads6804. doi: 10.1126/sciadv.ads6804. Epub 2025 Feb 19.
9
Features of membrane protein sequence direct post-translational insertion.
Nat Commun. 2024 Nov 25;15(1):10198. doi: 10.1038/s41467-024-54575-6.

本文引用的文献

2
A structural model of the active ribosome-bound membrane protein insertase YidC.
Elife. 2014 Jul 10;3:e03035. doi: 10.7554/eLife.03035.
3
Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution.
Cell. 2014 Jun 19;157(7):1632-43. doi: 10.1016/j.cell.2014.05.024. Epub 2014 Jun 12.
5
Mitochondrial protein translocases for survival and wellbeing.
FEBS Lett. 2014 Aug 1;588(15):2484-95. doi: 10.1016/j.febslet.2014.05.028. Epub 2014 May 24.
6
Large tilts in transmembrane helices can be induced during tertiary structure formation.
J Mol Biol. 2014 Jun 26;426(13):2529-38. doi: 10.1016/j.jmb.2014.04.020. Epub 2014 Apr 30.
7
Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.
Biochim Biophys Acta. 2014 Sep;1838(9):2243-9. doi: 10.1016/j.bbamem.2014.04.012. Epub 2014 Apr 21.
8
The Sec translocon mediated protein transport in prokaryotes and eukaryotes.
Mol Membr Biol. 2014 Mar-May;31(2-3):58-84. doi: 10.3109/09687688.2014.907455.
9
Structural basis of Sec-independent membrane protein insertion by YidC.
Nature. 2014 May 22;509(7501):516-20. doi: 10.1038/nature13167. Epub 2014 Apr 16.
10
Co-translational mechanisms of protein maturation.
Curr Opin Struct Biol. 2014 Feb;24:24-33. doi: 10.1016/j.sbi.2013.11.004. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验