Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece ; Centre for Computer Science and Informatics Research, Science and Technology Institute, University of Hertfordshire Hatfield, UK ; School of Computer Science, University of Hertfordshire Hatfield, UK.
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece ; Department of Biology, University of Crete Heraklion, Greece.
Front Cell Neurosci. 2014 Sep 16;8:287. doi: 10.3389/fncel.2014.00287. eCollection 2014.
Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1) repetitive action potentials (Regular Spiking-RS), and (2) an initial cluster of 2-5 action potentials with short interspike interval (ISIs) followed by single spikes (Intrinsic Bursting-IB). A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume, and branch number) and passive [Mean Electrotonic Path length (MEP)] features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume, and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.
锥体神经元是新皮质中最丰富的神经元,在不同物种的不同脑区和皮层层中表现出显著的结构变异性。此外,这些细胞在对体部阶跃电流的反应中表现出一系列的放电行为,最常见的是(1)重复动作电位(规则放电-RS)和(2)初始簇的 2-5 个动作电位,具有短的峰间间隔(ISI),随后是单个尖峰(固有爆发-IB)。最近有报道称,放电行为与树突形态之间存在相关性。在这项工作中,我们使用计算建模来定量研究基底树突形态对 112 个三维重建的 V 层 PFC 大鼠锥体神经元放电行为的影响。特别是,我们关注基底树突的不同形态(直径、总长度、体积和分支数)和被动(平均电树长度(MEP))特征如何在基底树突中的离子机制的空间分布均匀或不均匀时塑造体细胞放电。我们的结果表明,无论基底树中的离子机制分布如何,总长度、体积和分支数是区分 RS 或 IB 的最佳形态参数。在存在不同的顶树突的情况下,总长度、体积和分支数的判别能力仍然很高。这些结果表明,PFC 中 V 层锥体神经元基底树突的形态变化以可预测的方式影响其放电模式,并可能反过来影响这些神经元的信息处理能力。