Shazadi Kanvel, Petrovski Slavé, Roten Annie, Miller Hugh, Huggins Richard M, Brodie Martin J, Pirmohamed Munir, Johnson Michael R, Marson Anthony G, O'Brien Terence J, Sills Graeme J
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.
Department of Medicine (RMH/WH), University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia; BioGrid Australia, Melbourne, VIC, Australia.
Epilepsy Res. 2014 Dec;108(10):1797-805. doi: 10.1016/j.eplepsyres.2014.08.022. Epub 2014 Sep 16.
A multigenic classifier based on five single nucleotide polymorphisms (SNPs) was previously reported to predict treatment response in an Australian newly-diagnosed epilepsy cohort using a k-nearest neighbour (kNN) algorithm. We assessed the validity of this classifier in predicting response to initial antiepileptic drug (AED) treatment in two UK cohorts of newly-diagnosed epilepsy and investigated the utility of these five SNPs in predicting seizure control in general. The original Australian cohort constituted the training set for the classifier and was used to predict response to the first well-tolerated AED monotherapy in independently recruited UK cohorts (Glasgow, n=281; SANAD, n=491). A "leave-one-out" cross-validation was also employed, with training sets derived internally from the UK datasets. The multigenic classifier using the Australian cohort as the training set was unable to predict treatment response in either UK cohort. In the "leave-one-out" analysis, the five SNPs collectively predicted treatment response in both Glasgow and SANAD patients prescribed either carbamazepine or valproate (Glasgow OR=3.1, 95% CI=1.4-6.6, p=0.018; SANAD OR=2.8, 95% CI=1.3-6.1, p=0.048), but not those receiving lamotrigine (Glasgow OR=1.3, 95% CI=0.6-2.8, p=1.0; SANAD OR=2.2, 95% CI=0.9-5.4, p=0.36) or other AEDs (Glasgow OR=0.6, 95% CI=0.2-2.0, p=1.0; SANAD OR=1.9, 95% CI=0.9-4.2, p=0.36). The Australian-based multigenic kNN model is not predictive of initial treatment response in UK cohorts of newly-diagnosed epilepsy. However, the five SNPs identified in the original Australian study appear to collectively have a predictive influence in UK patients prescribed either carbamazepine or valproate.
先前有报道称,基于五个单核苷酸多态性(SNP)构建的多基因分类器,使用k近邻(kNN)算法预测澳大利亚新诊断癫痫队列中的治疗反应。我们评估了该分类器在预测两个英国新诊断癫痫队列中初始抗癫痫药物(AED)治疗反应方面的有效性,并总体研究了这五个SNP在预测癫痫发作控制方面的效用。原始澳大利亚队列构成了分类器的训练集,并用于预测独立招募的英国队列(格拉斯哥,n = 281;SANAD,n = 491)中对第一种耐受性良好的AED单药治疗的反应。还采用了“留一法”交叉验证,训练集内部来自英国数据集。以澳大利亚队列作为训练集的多基因分类器无法预测任何一个英国队列中的治疗反应。在“留一法”分析中,这五个SNP共同预测了开具卡马西平或丙戊酸盐的格拉斯哥和SANAD患者的治疗反应(格拉斯哥比值比= 3.1,95%置信区间= 1.4 - 6.6,p = 0.018;SANAD比值比= 2.8,95%置信区间= 1.3 - 6.1,p = 0.048),但对接受拉莫三嗪治疗的患者无预测作用(格拉斯哥比值比= 1.3,95%置信区间= 0.6 - 2.8,p = 1.0;SANAD比值比= 2.2,95%置信区间= 0.9 - 5.4,p = 0.36),对接受其他AED治疗的患者也无预测作用(格拉斯哥比值比= 0.6,95%置信区间= 0.2 - 2.0,p = 1.0;SANAD比值比= 1.9,95%置信区间= 0.9 - 4.2,p = 0.36)。基于澳大利亚的多基因kNN模型无法预测英国新诊断癫痫队列中的初始治疗反应。然而,在最初澳大利亚研究中确定的这五个SNP似乎共同对开具卡马西平或丙戊酸盐的英国患者有预测影响。