Suppr超能文献

一种用于生物标志物研究的新一代组织微阵列(ngTMA)方案。

A next-generation tissue microarray (ngTMA) protocol for biomarker studies.

作者信息

Zlobec Inti, Suter Guido, Perren Aurel, Lugli Alessandro

机构信息

Institute of Pathology, University of Bern;

Institute of Pathology, University of Bern.

出版信息

J Vis Exp. 2014 Sep 23(91):51893. doi: 10.3791/51893.

Abstract

Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a 'donor' block into a 'recipient' block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 'recipient' blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research.

摘要

生物标志物研究依赖于组织微阵列(TMA)。TMA是通过将小组织芯从“供体”块重复转移到“受体”块中产生的,然后用于各种生物标志物应用。传统TMA的构建劳动强度大、不精确且耗时。在此,概述了一种使用下一代组织微阵列(ngTMA)的方案。ngTMA基于TMA规划与设计、数字病理学和自动化组织微阵列技术。该方案以134例转移性结直肠癌患者为例进行说明。考虑了组织学、统计学和后勤方面的因素,如纳入TMA的组织类型、特定组织学区域和细胞类型、组织斑点数量、样本量、统计分析以及TMA复制品数量。对每位患者的组织学切片进行扫描并上传到基于网络的数字平台。在该平台上,使用直径为0.6 - 2.0毫米的工具多次查看并注释(标记)切片,使用各种颜色区分组织区域。将供体块和12个“受体”块装入仪器。检索数字切片并将其与供体块图像匹配。自动对注释区域进行重复排列,从而得到一个ngTMA。在这个例子中,计划制作六个包含六种不同组织类型/组织学区域 的ngTMA。需要两份ngTMA复制品。为每位患者扫描三到四张切片;需要进行3次扫描,且在夜间进行。对所有切片进行注释;使用不同颜色代表不同的组织/区域,即肿瘤中心、浸润前沿、肿瘤/基质、淋巴结转移、肝转移和正常组织。每个病例进行17次注释;注释时间为每个病例2 - 3分钟。制作了12个包含4556个斑点的ngTMA。排列时间为15 - 20小时。由于其精确性、灵活性和速度,ngTMA是进一步提高临床和转化研究中使用的TMA质量的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验