Suppr超能文献

多元稀疏主成分分析。

Multilinear sparse principal component analysis.

出版信息

IEEE Trans Neural Netw Learn Syst. 2014 Oct;25(10):1942-50. doi: 10.1109/TNNLS.2013.2297381.

Abstract

In this brief, multilinear sparse principal component analysis (MSPCA) is proposed for feature extraction from the tensor data. MSPCA can be viewed as a further extension of the classical principal component analysis (PCA), sparse PCA (SPCA) and the recently proposed multilinear PCA (MPCA). The key operation of MSPCA is to rewrite the MPCA into multilinear regression forms and relax it for sparse regression. Differing from the recently proposed MPCA, MSPCA inherits the sparsity from the SPCA and iteratively learns a series of sparse projections that capture most of the variation of the tensor data. Each nonzero element in the sparse projections is selected from the most important variables/factors using the elastic net. Extensive experiments on Yale, Face Recognition Technology face databases, and COIL-20 object database encoded the object images as second-order tensors, and Weizmann action database as third-order tensors demonstrate that the proposed MSPCA algorithm has the potential to outperform the existing PCA-based subspace learning algorithms.

摘要

本文提出了一种基于张量数据的多线性稀疏主成分分析(MSPCA)的特征提取方法。MSPCA 可以看作是经典主成分分析(PCA)、稀疏主成分分析(SPCA)和最近提出的多线性主成分分析(MPCA)的进一步扩展。MSPCA 的关键操作是将 MPCA 重写为多线性回归形式,并对其进行稀疏回归放松。与最近提出的 MPCA 不同,MSPCA 继承了 SPCA 的稀疏性,并迭代学习一系列稀疏投影,以捕获张量数据的大部分变化。在 Yale、人脸识别技术(FRT)人脸数据库和 COIL-20 物体数据库中,将物体图像编码为二阶张量,以及 Weizmann 动作数据库作为三阶张量,进行了广泛的实验。实验结果表明,所提出的 MSPCA 算法有潜力优于现有的基于 PCA 的子空间学习算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验