Suppr超能文献

Let-7协同抑制氨基酸感应通路的组分,以抑制mTORC1并诱导自噬。

Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy.

作者信息

Dubinsky Amy N, Dastidar Somasish Ghosh, Hsu Cynthia L, Zahra Rabaab, Djakovic Stevan N, Duarte Sonia, Esau Christine C, Spencer Brian, Ashe Travis D, Fischer Kimberlee M, MacKenna Deidre A, Sopher Bryce L, Masliah Eliezer, Gaasterland Terry, Chau B Nelson, Pereira de Almeida Luis, Morrison Bradley E, La Spada Albert R

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal.

出版信息

Cell Metab. 2014 Oct 7;20(4):626-38. doi: 10.1016/j.cmet.2014.09.001.

Abstract

Macroautophagy (hereafter autophagy) is the major pathway by which macromolecules and organelles are degraded. Autophagy is regulated by the mTOR signaling pathway-the focal point for integration of metabolic information, with mTORC1 playing a central role in balancing biosynthesis and catabolism. Of the various inputs to mTORC1, the amino acid sensing pathway is among the most potent. Based upon transcriptome analysis of neurons subjected to nutrient deprivation, we identified let-7 microRNA as capable of promoting neuronal autophagy. We found that let-7 activates autophagy by coordinately downregulating the amino acid sensing pathway to prevent mTORC1 activation. Let-7 induced autophagy in the brain to eliminate protein aggregates, establishing its physiological relevance for in vivo autophagy modulation. Moreover, peripheral delivery of let-7 anti-miR repressed autophagy in muscle and white fat, suggesting that let-7 autophagy regulation extends beyond CNS. Hence, let-7 plays a central role in nutrient homeostasis and proteostasis regulation in higher organisms.

摘要

巨自噬(以下简称自噬)是大分子和细胞器降解的主要途径。自噬受mTOR信号通路调控——mTOR信号通路是整合代谢信息的焦点,其中mTORC1在平衡生物合成和分解代谢中起核心作用。在输入mTORC1的各种信号中,氨基酸感应途径是最有效的途径之一。基于对营养剥夺神经元的转录组分析,我们鉴定出let-7微小RNA能够促进神经元自噬。我们发现,let-7通过协同下调氨基酸感应途径来激活自噬,以防止mTORC1激活。Let-7在大脑中诱导自噬以清除蛋白质聚集体,确立了其在体内自噬调节中的生理相关性。此外,外周给予let-7抗miR可抑制肌肉和白色脂肪中的自噬,这表明let-7对自噬的调节作用超出了中枢神经系统。因此,let-7在高等生物的营养稳态和蛋白质稳态调节中起核心作用。

相似文献

2
Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle.
J Biol Chem. 2013 Jul 19;288(29):21074-21081. doi: 10.1074/jbc.M113.456228. Epub 2013 Jun 6.
3
The amino acid transporter SLC38A9 regulates MTORC1 and autophagy.
Autophagy. 2015;11(10):1709-10. doi: 10.1080/15548627.2015.1084461.
4
RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
Cell Signal. 2014 Mar;26(3):461-7. doi: 10.1016/j.cellsig.2013.11.035. Epub 2013 Dec 3.
5
Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging.
J Biol Chem. 2014 Jan 31;289(5):2658-74. doi: 10.1074/jbc.M113.528505. Epub 2013 Dec 11.
6
Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling.
J Biol Chem. 2008 Nov 7;283(45):30482-92. doi: 10.1074/jbc.M803348200. Epub 2008 Aug 1.
7
Spatial regulation of the mTORC1 system in amino acids sensing pathway.
Acta Biochim Biophys Sin (Shanghai). 2011 Sep;43(9):671-9. doi: 10.1093/abbs/gmr066. Epub 2011 Jul 23.
8
Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
Cell Signal. 2014 Sep;26(9):1918-27. doi: 10.1016/j.cellsig.2014.04.019. Epub 2014 May 2.
9
RAG GTPases in nutrient-mediated TOR signaling pathway.
Cell Cycle. 2009 Apr 1;8(7):1014-8. doi: 10.4161/cc.8.7.8124. Epub 2009 Apr 9.
10
Amino acid homeostasis and signalling in mammalian cells and organisms.
Biochem J. 2017 May 25;474(12):1935-1963. doi: 10.1042/BCJ20160822.

引用本文的文献

1
Autophagic stress activates distinct compensatory secretory pathways in neurons.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2421886122. doi: 10.1073/pnas.2421886122. Epub 2025 Jul 7.
3
Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis.
Mol Neurobiol. 2025 Apr 3. doi: 10.1007/s12035-025-04831-7.
4
Prior epigenetic status predicts future susceptibility to seizures in mice.
bioRxiv. 2025 Mar 23:2025.03.20.644199. doi: 10.1101/2025.03.20.644199.
5
Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma.
Virulence. 2024 Dec;15(1):2421231. doi: 10.1080/21505594.2024.2421231. Epub 2024 Nov 20.
8
The developmentally dynamic microRNA transcriptome of tsetse flies, vectors of animal trypanosomiasis.
Bioinform Adv. 2021 Dec 28;2(1):vbab047. doi: 10.1093/bioadv/vbab047. eCollection 2022.
10
miRNA-mRNA-protein dysregulated network in COPD in women.
Front Genet. 2022 Nov 17;13:1010048. doi: 10.3389/fgene.2022.1010048. eCollection 2022.

本文引用的文献

1
Emerging regulation and functions of autophagy.
Nat Cell Biol. 2013 Jul;15(7):713-20. doi: 10.1038/ncb2788.
3
The hallmarks of aging.
Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
4
Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice.
Hum Mol Genet. 2013 Oct 15;22(20):4127-35. doi: 10.1093/hmg/ddt261. Epub 2013 Jun 4.
5
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Nat Cell Biol. 2013 Jun;15(6):647-58. doi: 10.1038/ncb2718. Epub 2013 Apr 21.
6
Amino acid signalling upstream of mTOR.
Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9. doi: 10.1038/nrm3522. Epub 2013 Jan 30.
7
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival.
Nature. 2013 Jan 31;493(7434):679-83. doi: 10.1038/nature11745. Epub 2012 Dec 23.
8
Selective autophagy degrades DICER and AGO2 and regulates miRNA activity.
Nat Cell Biol. 2012 Dec;14(12):1314-21. doi: 10.1038/ncb2611.
9
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1.
Cell. 2012 Sep 14;150(6):1196-208. doi: 10.1016/j.cell.2012.07.032.
10
Guidelines for the use and interpretation of assays for monitoring autophagy.
Autophagy. 2012 Apr;8(4):445-544. doi: 10.4161/auto.19496.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验