London Centre for Nanotechnology, University College London , London WC1E 6BT, U.K.
ACS Nano. 2014 Oct 28;8(10):9905-13. doi: 10.1021/nn505578x. Epub 2014 Oct 17.
The energetic barriers that atoms and molecules often experience when binding to surfaces are incredibly important to a myriad of chemical and physical processes. However, these barriers are difficult to describe accurately with current computer simulation approaches. Two prominent contemporary challenges faced by simulation are the role of van der Waals forces and nuclear quantum effects. Here we examine the widely studied model systems of hydrogen on graphene and coronene using a van der Waals inclusive density functional theory approach together with path integral molecular dynamics at 50 K. We find that both van der Waals and quantum nuclear effects work together in a cooperative manner to dramatically reduce the barriers for hydrogen atoms to adsorb. This suggests that the low temperature hydrogenation of graphene is easier than previously thought and in more general terms that the combined roles of van der Waals and quantum tunnelling can lead to qualitative changes in adsorption.
原子和分子在与表面结合时经常经历的能量障碍对无数化学和物理过程都非常重要。然而,目前的计算机模拟方法很难准确描述这些障碍。模拟面临的两个突出的当代挑战是范德华力和核量子效应的作用。在这里,我们使用包含范德华力的密度泛函理论方法以及 50 K 下的路径积分分子动力学,研究了广泛研究的氢在石墨烯和 coronene 上的模型系统。我们发现,范德华力和量子核效应以协同的方式共同作用,显著降低了氢原子吸附的势垒。这表明,与之前的想法相比,石墨烯的低温加氢更容易,更一般地说,范德华力和量子隧穿的共同作用可能导致吸附的定性变化。