Suppr超能文献

细胞质甘油三酯代谢的先天性缺陷。

Inborn errors of cytoplasmic triglyceride metabolism.

作者信息

Wu Jiang Wei, Yang Hao, Wang Shu Pei, Soni Krishnakant G, Brunel-Guitton Catherine, Mitchell Grant A

机构信息

Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.

出版信息

J Inherit Metab Dis. 2015 Jan;38(1):85-98. doi: 10.1007/s10545-014-9767-7. Epub 2014 Oct 10.

Abstract

Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.

摘要

甘油三酯(TG)的合成、储存和降解共同构成细胞质甘油三酯代谢(CTGM)。CTGM大多是在脂肪细胞中进行研究的,在脂肪细胞中,从3-磷酸甘油和脂肪酰基(FA)-辅酶A(CoA)开始,合成甘油三酯,然后储存在细胞质脂滴中。甘油三酯水解依次进行,产生脂肪酸和甘油。CTGM的几种反应可由多种酶催化,这为复杂的组织特异性生理学创造了巨大潜力。在脂肪组织中,CTGM在禁食期间提供脂肪酸作为全身能量来源,并且与肥胖有关。先天性缺陷和小鼠模型已经证明CTGM对非脂肪组织(包括骨骼肌、心肌和肝脏)很重要,因为可能会发生脂肪变性和功能障碍。我们讨论了已知的CTGM先天性缺陷,包括以下酶的缺乏:AGPAT2(一种全身性脂肪营养不良形式)、LPIN1(儿童横纹肌溶解症)、LPIN2(一种炎症性疾病,马吉德综合征,在本期其他地方有描述)、DGAT1(蛋白丢失性肠病)、围脂滴蛋白1(部分脂肪营养不良)、CGI-58(基因ABHD5,伴有鱼鳞病的中性脂质贮积病(NLSD)和空泡化多形核白细胞的“乔丹异常”)、脂肪甘油三酯脂肪酶(ATGL,基因PNPLA2,伴有肌病、心肌病和乔丹异常的NLSD)、激素敏感性脂肪酶(HSL,基因LIPE,高甘油三酯血症和胰岛素抵抗)。已知两种甘油代谢的先天性缺陷:甘油激酶(GK,导致假性高甘油三酯血症)和3-磷酸甘油脱氢酶(GPD1,儿童期肝脂肪变性)。小鼠模型通常类似于人类表型,但可能有明显差异。CTGM酶中不到三分之一的酶存在先天性缺陷描述,可能还会发现新的表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验