Suppr超能文献

衰老作为一个促成新生隐球菌表型变异的新出现因素。

Aging as an emergent factor that contributes to phenotypic variation in Cryptococcus neoformans.

作者信息

Bouklas Tejas, Fries Bettina C

机构信息

Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony Brook, NY, USA.

Department of Medicine (Division of Infectious Diseases), Stony Brook University, Stony Brook, NY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.

出版信息

Fungal Genet Biol. 2015 May;78:59-64. doi: 10.1016/j.fgb.2014.10.004. Epub 2014 Oct 13.

Abstract

Cryptococcus neoformans, similar to other eukaryotes, undergoes replicative aging. Replicative life spans have been determined for clinical C. neoformans strains, and although they are a reproducible trait, life spans vary considerably among strains. C. neoformans has been proposed as an ideal model organism to investigate the contribution of replicative aging in a fungal pathogen population to emerging phenotypic variation during chronic cryptococcal infections. C. neoformans cells of advanced generational age manifest a distinct phenotype; specifically, a larger cell size, a thicker cell wall, drug resistance, as well as resistance to hydrogen peroxide-mediated killing. Consequently, old cells are selected in the host environment during chronic infection and aging could be an unanticipated mechanism of pathogen adaptation that contributes to persistent disease. Aging as a natural process of phenotypic variation should be further studied as it likely is also relevant for other eukaryotic pathogen populations that undergo asymmetric replicative aging.

摘要

新型隐球菌与其他真核生物一样,会经历复制性衰老。已经测定了临床新型隐球菌菌株的复制寿命,尽管这是一个可重复的性状,但不同菌株的寿命差异很大。新型隐球菌已被提议作为一种理想的模式生物,用于研究真菌病原体群体中的复制性衰老对慢性隐球菌感染期间新出现的表型变异的影响。高龄代的新型隐球菌细胞表现出独特的表型;具体而言,细胞体积更大、细胞壁更厚、具有耐药性以及对过氧化氢介导的杀伤具有抗性。因此,在慢性感染期间,老龄细胞会在宿主环境中被选择出来,而衰老可能是病原体适应的一种意外机制,有助于疾病的持续存在。衰老作为表型变异的自然过程,应该进一步研究,因为它可能也与经历不对称复制性衰老的其他真核病原体群体有关。

相似文献

1
Aging as an emergent factor that contributes to phenotypic variation in Cryptococcus neoformans.
Fungal Genet Biol. 2015 May;78:59-64. doi: 10.1016/j.fgb.2014.10.004. Epub 2014 Oct 13.
3
Old Cryptococcus neoformans cells contribute to virulence in chronic cryptococcosis.
mBio. 2013 Aug 13;4(4):e00455-13. doi: 10.1128/mBio.00455-13.
7
The interplay of phenotype and genotype in Cryptococcus neoformans disease.
Biosci Rep. 2020 Oct 30;40(10). doi: 10.1042/BSR20190337.
9

引用本文的文献

1
Phenotypic plasticity as a facilitator of microbial evolution.
Environ Epigenet. 2022 Nov 17;8(1):dvac020. doi: 10.1093/eep/dvac020. eCollection 2022.
3
Modeling aging and its impact on cellular function and organismal behavior.
Exp Gerontol. 2021 Nov;155:111577. doi: 10.1016/j.exger.2021.111577. Epub 2021 Sep 26.
4
Solid-state NMR spectroscopy identifies three classes of lipids in melanized cell walls and whole fungal cells.
J Biol Chem. 2020 Oct 30;295(44):15083-15096. doi: 10.1074/jbc.RA120.015201. Epub 2020 Aug 28.
5
High-Throughput Yeast Aging Analysis for Cryptococcus (HYAAC) microfluidic device streamlines aging studies in .
Commun Biol. 2019 Jul 10;2:256. doi: 10.1038/s42003-019-0504-5. eCollection 2019.
6
Mechanisms of Pulmonary Escape and Dissemination by Cryptococcus neoformans.
J Fungi (Basel). 2018 Feb 17;4(1):25. doi: 10.3390/jof4010025.
7
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.
Microbiology (Reading). 2017 Nov;163(11):1540-1556. doi: 10.1099/mic.0.000552. Epub 2017 Oct 18.
9
Cryptococcus: from environmental saprophyte to global pathogen.
Nat Rev Microbiol. 2016 Feb;14(2):106-17. doi: 10.1038/nrmicro.2015.6. Epub 2015 Dec 21.
10
Rising to the challenge of multiple Cryptococcus species and the diseases they cause.
Fungal Genet Biol. 2015 May;78:1-6. doi: 10.1016/j.fgb.2015.05.002. Epub 2015 May 14.

本文引用的文献

1
Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis.
J Clin Invest. 2014 May;124(5):2000-8. doi: 10.1172/JCI72950. Epub 2014 Apr 17.
2
Balancing stability and flexibility within the genome of the pathogen Cryptococcus neoformans.
PLoS Pathog. 2013;9(12):e1003764. doi: 10.1371/journal.ppat.1003764. Epub 2013 Dec 12.
4
Old Cryptococcus neoformans cells contribute to virulence in chronic cryptococcosis.
mBio. 2013 Aug 13;4(4):e00455-13. doi: 10.1128/mBio.00455-13.
6
Titan cells in Cryptococcus neoformans: cells with a giant impact.
Curr Opin Microbiol. 2013 Aug;16(4):409-13. doi: 10.1016/j.mib.2013.03.006. Epub 2013 Apr 12.
8
Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa.
Mol Microbiol. 2013 Apr;88(1):64-76. doi: 10.1111/mmi.12169. Epub 2013 Mar 6.
9
Polarity and cell fate asymmetry in Caulobacter crescentus.
Curr Opin Microbiol. 2012 Dec;15(6):744-50. doi: 10.1016/j.mib.2012.10.011. Epub 2012 Nov 9.
10
Cell division site placement and asymmetric growth in mycobacteria.
PLoS One. 2012;7(9):e44582. doi: 10.1371/journal.pone.0044582. Epub 2012 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验