Suppr超能文献

微管动力蛋白 Kinesin-14 沿微管负端向驱动,将平行的微管排列整齐,从而控制中期纺锤体的长度。

Minus-end-directed Kinesin-14 motors align antiparallel microtubules to control metaphase spindle length.

机构信息

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.

MCD Biology, University of Colorado, Boulder, CO 80309, USA.

出版信息

Dev Cell. 2014 Oct 13;31(1):61-72. doi: 10.1016/j.devcel.2014.07.023.

Abstract

During cell division, a microtubule-based mitotic spindle mediates the faithful segregation of duplicated chromosomes into daughter cells. Proper length control of the metaphase mitotic spindle is critical to this process and is thought to be achieved through a mechanism in which spindle pole separation forces from plus-end-directed motors are balanced by forces from minus-end-directed motors that pull spindle poles together. However, in contrast to this model, metaphase mitotic spindles with inactive kinesin-14 minus-end-directed motors often have shorter spindle lengths, along with poorly aligned spindle microtubules. A mechanistic explanation for this paradox is unknown. Using computational modeling, in vitro reconstitution, live-cell fluorescence microscopy, and electron microscopy, we now find that the budding yeast kinesin-14 molecular motor Kar3-Cik1 can efficiently align spindle microtubules along the spindle axis. This then allows plus-end-directed kinesin-5 motors to efficiently exert the outward microtubule sliding forces needed for proper spindle bipolarity.

摘要

在细胞分裂过程中,基于微管的有丝分裂纺锤体将复制的染色体准确地分配到子细胞中。中期有丝分裂纺锤体的适当长度控制对这个过程至关重要,据认为这是通过一种机制实现的,其中来自正向驱动蛋白的纺锤极分离力与来自负向驱动蛋白的拉力相平衡,后者将纺锤极拉到一起。然而,与这个模型相反,具有失活的驱动蛋白-14 负向驱动蛋白的中期有丝分裂纺锤体通常具有较短的纺锤体长度,以及排列不良的纺锤体微管。对于这个悖论,其机制解释尚不清楚。使用计算建模、体外重组、活细胞荧光显微镜和电子显微镜,我们现在发现,芽殖酵母驱动蛋白-14 分子马达 Kar3-Cik1 可以有效地将纺锤体微管沿着纺锤体轴对齐。这使得正向驱动蛋白-5 马达能够有效地发挥出适当的纺锤体双极性所需要的向外微管滑动力。

相似文献

1
2
Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2108046119.
5
6
Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14.
J Cell Biol. 2010 May 3;189(3):465-80. doi: 10.1083/jcb.200910125.
7
Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles.
Mol Biol Cell. 2015 Nov 5;26(22):3999-4014. doi: 10.1091/mbc.E14-10-1454. Epub 2015 Sep 9.
8
Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control.
Nat Cell Biol. 2013 Aug;15(8):948-57. doi: 10.1038/ncb2801. Epub 2013 Jul 14.
9
Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae.
J Cell Biol. 2021 Mar 1;220(3). doi: 10.1083/jcb.202007193.
10
The role of Hklp2 in the stabilization and maintenance of spindle bipolarity.
Curr Biol. 2009 Nov 3;19(20):1712-7. doi: 10.1016/j.cub.2009.09.019. Epub 2009 Oct 8.

引用本文的文献

2
Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size.
Nat Commun. 2024 Nov 14;15(1):9865. doi: 10.1038/s41467-024-54123-2.
3
Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes.
Nat Commun. 2024 Aug 3;15(1):6564. doi: 10.1038/s41467-024-50990-x.
4
Positioning centrioles and centrosomes.
J Cell Biol. 2024 Apr 1;223(4). doi: 10.1083/jcb.202311140. Epub 2024 Mar 21.
6
Evidence of kinesin motors involved in stable kinetochore assembly during early meiosis.
Mol Biol Cell. 2023 Oct 1;34(11):ar107. doi: 10.1091/mbc.E22-12-0569. Epub 2023 Aug 9.
8
Cik1 and Vik1 accessory proteins confer distinct functions to the kinesin-14 Kar3.
J Cell Sci. 2023 Jun 1;136(11). doi: 10.1242/jcs.260621. Epub 2023 Jun 13.
9
Systematic analysis of microtubule plus-end networks defines EB-cargo complexes critical for mitosis in budding yeast.
Mol Biol Cell. 2023 May 1;34(5):ar37. doi: 10.1091/mbc.E23-02-0054. Epub 2023 Mar 8.

本文引用的文献

1
Micropattern-controlled local microtubule nucleation, transport, and mesoscale organization.
ACS Chem Biol. 2013 Apr 19;8(4):673-8. doi: 10.1021/cb300583p. Epub 2013 Jan 14.
2
Pivoting of microtubules around the spindle pole accelerates kinetochore capture.
Nat Cell Biol. 2013 Jan;15(1):82-7. doi: 10.1038/ncb2640. Epub 2012 Dec 9.
3
Building complexity: insights into self-organized assembly of microtubule-based architectures.
Dev Cell. 2012 Nov 13;23(5):874-85. doi: 10.1016/j.devcel.2012.10.011.
4
Quantification of MAP and molecular motor activities on geometrically controlled microtubule networks.
Cytoskeleton (Hoboken). 2013 Jan;70(1):12-23. doi: 10.1002/cm.21081. Epub 2012 Oct 17.
6
Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart.
Nat Cell Biol. 2011 Sep 4;13(10):1259-64. doi: 10.1038/ncb2323.
7
Control of mitotic spindle length.
Annu Rev Cell Dev Biol. 2010;26:21-57. doi: 10.1146/annurev-cellbio-100109-104006.
8
Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
Methods Cell Biol. 2010;95:221-45. doi: 10.1016/S0091-679X(10)95013-9.
9
Measurement of the copy number of the master quorum-sensing regulator of a bacterial cell.
Biophys J. 2010 May 19;98(9):2024-31. doi: 10.1016/j.bpj.2010.01.031.
10
Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules.
Mol Biol Cell. 2009 Mar;20(5):1348-59. doi: 10.1091/mbc.e08-09-0971. Epub 2008 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验