Suppr超能文献

自组织聚集的双曲型与抛物型模型中的对称性与模式形成

Symmetries and pattern formation in hyperbolic versus parabolic models of self-organised aggregation.

作者信息

Buono Pietro-Luciano, Eftimie Raluca

机构信息

Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ON, L1H 7K4, Canada,

出版信息

J Math Biol. 2015 Oct;71(4):847-81. doi: 10.1007/s00285-014-0842-3. Epub 2014 Oct 15.

Abstract

The study of self-organised collective animal behaviour, such as swarms of insects or schools of fish, has become over the last decade a very active research area in mathematical biology. Parabolic and hyperbolic models have been used intensively to describe the formation and movement of various aggregative behaviours. While both types of models can exhibit aggregation-type patterns, studies on hyperbolic models suggest that these models can display a larger variety of spatial and spatio-temporal patterns compared to their parabolic counterparts. Here we use stability, symmetry and bifurcation theory to investigate this observation more rigorously, an approach not attempted before to compare and contrast aggregation patterns in models for collective animal behaviors. To this end, we consider a class of nonlocal hyperbolic models for self-organised aggregations that incorporate various inter-individual communication mechanisms, and take the formal parabolic limit to transform them into nonlocal parabolic models. We then discuss the symmetry of these nonlocal hyperbolic and parabolic models, and the types of bifurcations present or lost when taking the parabolic limit. We show that the parabolic limit leads to a homogenisation of the inter-individual communication, and to a loss of bifurcation dynamics (in particular loss of Hopf bifurcations). This explains the less rich patterns exhibited by the nonlocal parabolic models. However, for multiple interacting populations, by breaking the population interchange symmetry of the model, one can preserve the Hopf bifurcations that lead to the formation of complex spatio-temporal patterns that describe moving aggregations.

摘要

在过去十年中,对昆虫群或鱼群等自组织集体动物行为的研究已成为数学生物学中一个非常活跃的研究领域。抛物线模型和双曲模型已被广泛用于描述各种聚集行为的形成和运动。虽然这两种类型的模型都可以展现出聚集型模式,但对双曲模型的研究表明,与抛物线模型相比,这些模型可以展示出更多样化的空间和时空模式。在此,我们运用稳定性、对称性和分岔理论更严格地研究这一观察结果,此前尚未有人尝试用这种方法来比较和对比集体动物行为模型中的聚集模式。为此,我们考虑一类用于自组织聚集的非局部双曲模型,这些模型纳入了各种个体间通信机制,并取形式上的抛物线极限将它们转化为非局部抛物线模型。然后,我们讨论这些非局部双曲模型和抛物线模型的对称性,以及在取抛物线极限时出现或消失的分岔类型。我们表明,抛物线极限导致个体间通信的同质化,并导致分岔动力学的丧失(特别是霍普夫分岔的丧失)。这就解释了非局部抛物线模型所展现的模式较为单一的原因。然而,对于多个相互作用的种群,通过打破模型的种群交换对称性,可以保留导致形成描述移动聚集的复杂时空模式的霍普夫分岔。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验