Suppr超能文献

一种新的脑铁摄取模型:引入调节的概念。

A novel model for brain iron uptake: introducing the concept of regulation.

机构信息

Department of Neural and Behavioral Sciences, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA.

Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA.

出版信息

J Cereb Blood Flow Metab. 2015 Jan;35(1):48-57. doi: 10.1038/jcbfm.2014.168. Epub 2014 Oct 15.

Abstract

Neurologic disorders such as Alzheimer's, Parkinson's disease, and Restless Legs Syndrome involve a loss of brain iron homeostasis. Moreover, iron deficiency is the most prevalent nutritional concern worldwide with many associated cognitive and neural ramifications. Therefore, understanding the mechanisms by which iron enters the brain and how those processes are regulated addresses significant global health issues. The existing paradigm assumes that the endothelial cells (ECs) forming the blood-brain barrier (BBB) serve as a simple conduit for transport of transferrin-bound iron. This concept is a significant oversimplification, at minimum failing to account for the iron needs of the ECs. Using an in vivo model of brain iron deficiency, the Belgrade rat, we show the distribution of transferrin receptors in brain microvasculature is altered in luminal, intracellular, and abluminal membranes dependent on brain iron status. We used a cell culture model of the BBB to show the presence of factors that influence iron release in non-human primate cerebrospinal fluid and conditioned media from astrocytes; specifically apo-transferrin and hepcidin were found to increase and decrease iron release, respectively. These data have been integrated into an interactive model where BBB ECs are central in the regulation of cerebral iron metabolism.

摘要

神经紊乱疾病,如阿尔茨海默病、帕金森病和不宁腿综合征,涉及大脑铁稳态的丧失。此外,铁缺乏是全球最普遍的营养问题之一,它与许多相关的认知和神经后果有关。因此,了解铁进入大脑的机制以及这些过程如何被调节,是解决重大全球健康问题的关键。现有的观点假设形成血脑屏障 (BBB) 的内皮细胞 (ECs) 充当转铁蛋白结合铁运输的简单管道。这一概念是一个严重的简化,至少没有考虑到 ECs 的铁需求。我们使用脑铁缺乏的活体模型——贝尔格莱德大鼠,显示了转铁蛋白受体在脑微血管中的分布,根据脑铁状态,在腔侧、细胞内和基底外侧膜中发生改变。我们使用 BBB 的细胞培养模型,显示了影响非人类灵长类动物脑脊液中铁释放的因素的存在,以及星形胶质细胞条件培养基中的因子;特别是脱铁转铁蛋白和铁调素分别被发现增加和减少铁释放。这些数据已被整合到一个互动模型中,其中 BBB ECs 是大脑铁代谢调节的核心。

相似文献

1
A novel model for brain iron uptake: introducing the concept of regulation.
J Cereb Blood Flow Metab. 2015 Jan;35(1):48-57. doi: 10.1038/jcbfm.2014.168. Epub 2014 Oct 15.
2
Regulatory mechanisms for iron transport across the blood-brain barrier.
Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):70-75. doi: 10.1016/j.bbrc.2017.10.083. Epub 2017 Oct 17.
3
Hepcidin Suppresses Brain Iron Accumulation by Downregulating Iron Transport Proteins in Iron-Overloaded Rats.
Mol Neurobiol. 2015 Aug;52(1):101-14. doi: 10.1007/s12035-014-8847-x. Epub 2014 Aug 13.
5
Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier.
J Cereb Blood Flow Metab. 2019 Nov;39(11):2117-2131. doi: 10.1177/0271678X18783372. Epub 2018 Jun 18.
6
Brain iron homeostasis.
Dan Med Bull. 2002 Nov;49(4):279-301.
7
Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy.
Cell Mol Life Sci. 2015 Feb;72(4):709-27. doi: 10.1007/s00018-014-1771-4. Epub 2014 Oct 30.
8
Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.
PLoS One. 2014 Feb 12;9(2):e89003. doi: 10.1371/journal.pone.0089003. eCollection 2014.
9
Brain iron transport.
Biol Rev Camb Philos Soc. 2019 Oct;94(5):1672-1684. doi: 10.1111/brv.12521. Epub 2019 Jun 12.
10
Iron transport kinetics through blood-brain barrier endothelial cells.
Biochim Biophys Acta Gen Subj. 2018 May;1862(5):1168-1179. doi: 10.1016/j.bbagen.2018.02.010. Epub 2018 Feb 18.

引用本文的文献

1
Astrocyte secretome remodeling under iron deficiency: potential implications for brain iron homeostasis.
Biol Open. 2025 Jul 15;14(7). doi: 10.1242/bio.062057. Epub 2025 Jul 9.
2
Serotransferrin enhances transferrin receptor-mediated brain uptake of antibodies.
Drug Deliv Transl Res. 2025 Feb 19. doi: 10.1007/s13346-025-01811-1.
3
Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases.
Signal Transduct Target Ther. 2025 Feb 3;10(1):31. doi: 10.1038/s41392-024-02071-0.
4
Age and sex-based impacts of maternal iron deficiency on offspring's cognitive function and anemia: A systematic review.
Eur J Clin Nutr. 2024 Jun;78(6):477-485. doi: 10.1038/s41430-024-01423-x. Epub 2024 Feb 29.
5
Iron homeostasis and post-hemorrhagic hydrocephalus: a review.
Front Neurol. 2024 Jan 12;14:1287559. doi: 10.3389/fneur.2023.1287559. eCollection 2023.
6
Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases.
Arch Toxicol. 2024 Mar;98(3):579-615. doi: 10.1007/s00204-023-03660-8. Epub 2024 Jan 24.
7
Iron imbalance in neurodegeneration.
Mol Psychiatry. 2024 Apr;29(4):1139-1152. doi: 10.1038/s41380-023-02399-z. Epub 2024 Jan 12.
8
Brain Iron Homeostasis and Mental Disorders.
Antioxidants (Basel). 2023 Nov 13;12(11):1997. doi: 10.3390/antiox12111997.

本文引用的文献

1
Effects of IV iron isomaltoside-1000 treatment on regional brain iron status in an iron-deficient animal.
Neuroscience. 2013 Aug 29;246:179-85. doi: 10.1016/j.neuroscience.2013.04.049. Epub 2013 May 7.
2
Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux.
J Biol Chem. 2013 Jun 14;288(24):17932-40. doi: 10.1074/jbc.M113.455428. Epub 2013 May 2.
3
Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts.
Blood. 2011 Sep 8;118(10):2868-77. doi: 10.1182/blood-2011-01-330241. Epub 2011 Jun 23.
4
Profile of altered brain iron acquisition in restless legs syndrome.
Brain. 2011 Apr;134(Pt 4):959-68. doi: 10.1093/brain/awr012. Epub 2011 Mar 11.
5
Transient expression of iron transport proteins in the capillary of the developing rat brain.
Cell Mol Neurobiol. 2011 Jan;31(1):93-9. doi: 10.1007/s10571-010-9558-0.
6
Age-dependent retinal iron accumulation and degeneration in hepcidin knockout mice.
Invest Ophthalmol Vis Sci. 2011 Jan 5;52(1):109-18. doi: 10.1167/iovs.10-6113.
8
Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells.
J Mol Med (Berl). 2009 Feb;87(2):153-67. doi: 10.1007/s00109-008-0414-3. Epub 2008 Dec 9.
9
Diurnal cycle influences peripheral and brain iron levels in mice.
J Appl Physiol (1985). 2009 Jan;106(1):187-93. doi: 10.1152/japplphysiol.91076.2008. Epub 2008 Nov 6.
10
The hepcidin-binding site on ferroportin is evolutionarily conserved.
Cell Metab. 2008 Aug;8(2):146-56. doi: 10.1016/j.cmet.2008.07.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验