Nagaraj Sunil Belur, Stevenson Nathan J, Marnane William P, Boylan Geraldine B, Lightbody Gordon
IEEE Trans Biomed Eng. 2014 Nov;61(11):2724-32. doi: 10.1109/TBME.2014.2326921.
Atomic decomposition (AD) can be used to efficiently decompose an arbitrary signal. In this paper, we present a method to detect neonatal electroencephalogram (EEG) seizure based on AD via orthogonal matching pursuit using a novel, application-specific, dictionary. The dictionary consists of pseudoperiodic Duffing oscillator atoms which are designed to be coherent with the seizure epochs. The relative structural complexity (a measure of the rate of convergence of AD) is used as the sole feature for seizure detection. The proposed feature was tested on a large clinical dataset of 826 h of EEG data from 18 full-term newborns with 1389 seizures. The seizure detection system using the proposed dictionary was able to achieve a median receiver operator characteristic area of 0.91 (IQR 0.87-0.95) across 18 neonates.
原子分解(AD)可用于有效分解任意信号。在本文中,我们提出了一种基于AD的方法,通过使用一种新颖的、特定应用的字典,经由正交匹配追踪来检测新生儿脑电图(EEG)癫痫发作。该字典由伪周期杜芬振荡器原子组成,这些原子被设计为与癫痫发作期相干。相对结构复杂度(一种衡量AD收敛速率的指标)被用作癫痫发作检测的唯一特征。所提出的特征在一个大型临床数据集上进行了测试,该数据集包含来自18名足月儿的826小时脑电图数据以及1389次癫痫发作。使用所提出字典的癫痫发作检测系统在18名新生儿中能够实现中位数受试者工作特征曲线下面积为0.91(四分位距0.87 - 0.95)。