Fundamental Aspects of Materials and Energy, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology , Mekelweg 15, 2629 JB, Delft, The Netherlands.
J Am Chem Soc. 2014 Nov 19;136(46):16335-44. doi: 10.1021/ja508794r. Epub 2014 Nov 5.
Fundamental research into the Li-O2 battery system has gone into high gear, gaining momentum because of its very high theoretical specific energy. Much progress has been made toward understanding the discharge mechanism, but the mechanism of the oxygen evolution reaction (OER) on charge (i.e., oxidation) remains less understood. Here, using operando X-ray diffraction, we show that oxidation of electrochemically generated Li2O2 occurs in two stages, but in one step for bulk crystalline (commercial) Li2O2, revealing a fundamental difference in the OER process depending on the nature of the peroxide. For electrochemically generated Li2O2, oxidation proceeds first through a noncrystalline lithium peroxide component, followed at higher potential by the crystalline peroxide via a Li deficient solid solution (Li(2-x)O2) phase. Anisotropic broadening of the X-ray Li2O2 reflections confirms a platelet crystallite shape. On the basis of the evolution of the broadening during charge, we speculate that the toroid particles are deconstructed one platelet at a time, starting with the smallest sizes that expose more peroxide surface. In the case of in situ charged bulk crystalline Li2O2, the Li vacancies preferentially form on the interlayer position (Li1), which is supported by first-principle calculations and consistent with their lower energy compared to those located next to oxygen (Li2). The small actively oxidizing fraction results in a gradual reduction of the Li2O2 crystallites. The fundamental insight gained in the OER charge mechanism and its relation to the nature of the Li2O2 particles is essential for the design of future electrodes with lower overpotentials, one of the key challenges for high performance Li-air batteries.
对锂-氧气电池系统的基础研究已经全面展开,由于其极高的理论比能量,该研究势头强劲。人们在理解放电机制方面已经取得了很大进展,但充电时氧气析出反应(OER)的机制仍了解较少。在这里,我们使用 operando X 射线衍射表明,电化学生成的 Li2O2 的氧化分两个阶段进行,但对于块状晶体(商业)Li2O2 而言,这两个阶段合为一步,这揭示了 OER 过程取决于过氧化物的性质,存在根本差异。对于电化学生成的 Li2O2,氧化首先通过非晶态过氧化锂组分进行,然后在更高的电势下通过 Li 不足的固溶体(Li(2-x)O2)相通过结晶过氧化物进行。X 射线 Li2O2 反射的各向异性展宽证实了板状微晶的形状。基于充电过程中展宽的演变,我们推测,toroid 颗粒一次一个地从最小尺寸开始解构,这些最小尺寸暴露了更多的过氧化物表面。对于原位充入块状晶体 Li2O2 的情况,Li 空位优先在层间位置(Li1)形成,这得到第一性原理计算的支持,与它们与氧(Li2)相邻的位置相比,能量更低。少量的活性氧化部分导致 Li2O2 微晶逐渐还原。OER 充电机制及其与 Li2O2 颗粒性质的关系的基本见解对于设计具有更低过电势的未来电极至关重要,这是高性能 Li-空气电池的关键挑战之一。