Moorthy N S Hari Narayana, Poongavanam Vasanthanathan, Pratheepa V
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, Rua do Campo Alegre, 4169-007 Porto, Portugal.
Mini Rev Med Chem. 2014;14(10):819-30.
Influenza virus is an important RNA virus causing pandemics (Spanish Flu (1918), Asian Flu (1957), Hong Kong Flu (1968) and Swine Flu (2009)) over the last decades. Due to the spontaneous mutations of these viral proteins, currently available antiviral and anti-influenza drugs quickly develop resistance. To account this, only limited antiinfluenza drugs have been approved for the therapeutic use. These include amantadine and rimantadine (M2 proton channel blockers), zanamivir, oseltamivir and peramivir (neuraminidase inhibitors), favipravir (polymerase inhibitor) and laninamivir. This review provides an outline on the strategies to develop novel, potent chemotherapeutic agents against M2 proton channel. Primarily, the M2 proton channel blockers elicit pharmacological activity through destabilizing the helices by blocking the proton transport across the transmembrane. The biologically important compounds discovered using the scaffolds such as bisnoradmantane, noradamantane, triazine, spiroadamantane, isoxazole, amino alcohol, azaspiro, spirene, pinanamine, etc are reported to exhibit anti-influenza activity against wild or mutant type (S31N and V27A) of M2 proton channel protein. The reported studies explained that the adamantane based compounds (amantadine and rimantadine) strongly interact with His37 (through hydrogen bonding) and Ala30, Ile33 and Gly34 residues (hydrophobic interactions). The adamantane and the non-adamantane scaffolds fit perfectly in the active site pocket present in the wild type and the charged amino groups (ammonium) create positive electrostatic potential, which blocks the transport of protons across the pore. In the mutated proteins, larger or smaller binding pocket are created by small or large mutant residues, which do not allow the molecules fit in the active site. This causes the channel to be unblocked and the protons are allowed to transfer inside the pore. The structural analysis of the M2 proton channel blockers illustrated that the adamantane derivatives have action against both influenza A and B, but have no effect on the mutants.
流感病毒是一种重要的RNA病毒,在过去几十年中引发了多次大流行(西班牙流感(1918年)、亚洲流感(1957年)、香港流感(1968年)和猪流感(2009年))。由于这些病毒蛋白的自发突变,目前可用的抗病毒和抗流感药物很快就会产生耐药性。考虑到这一点,只有有限的抗流感药物被批准用于治疗。这些药物包括金刚烷胺和金刚乙胺(M2质子通道阻滞剂)、扎那米韦、奥司他韦和帕拉米韦(神经氨酸酶抑制剂)、法匹拉韦(聚合酶抑制剂)和拉尼米韦。本综述概述了开发针对M2质子通道的新型、有效化疗药物的策略。主要地,M2质子通道阻滞剂通过阻止质子跨膜运输使螺旋不稳定来引发药理活性。据报道,使用双降金刚烷、金刚烷、三嗪、螺金刚烷、异恶唑、氨基醇、氮杂螺、螺烯、蒎烷胺等支架发现的具有生物学重要性的化合物对M2质子通道蛋白的野生型或突变型(S31N和V27A)具有抗流感活性。报道的研究解释说,基于金刚烷的化合物(金刚烷胺和金刚乙胺)与His37(通过氢键)以及Ala30、Ile33和Gly34残基(疏水相互作用)强烈相互作用。金刚烷和非金刚烷支架完美地契合野生型中的活性位点口袋,带正电的氨基(铵)产生正静电势,从而阻止质子跨孔运输。在突变蛋白中,由大小不同的突变残基形成更大或更小的结合口袋,这使得分子无法契合活性位点。这导致通道未被阻断,质子被允许转移到孔内。M2质子通道阻滞剂的结构分析表明,金刚烷衍生物对甲型和乙型流感均有作用,但对突变体无效。