Suppr超能文献

通过生物催化自组装发现催化噬菌体。

Discovery of catalytic phages by biocatalytic self-assembly.

作者信息

Maeda Yoshiaki, Javid Nadeem, Duncan Krystyna, Birchall Louise, Gibson Kirsty F, Cannon Daniel, Kanetsuki Yuka, Knapp Charles, Tuttle Tell, Ulijn Rein V, Matsui Hiroshi

机构信息

Department of Chemistry and Biochemistry, Hunter College, City University of New York , 695 Park Avenue, New York, New York 10065, United States.

出版信息

J Am Chem Soc. 2014 Nov 12;136(45):15893-6. doi: 10.1021/ja509393p. Epub 2014 Oct 29.

Abstract

Discovery of new catalysts for demanding aqueous reactions is challenging. Here, we describe methodology for selection of catalytic phages by taking advantage of localized assembly of the product of the catalytic reaction that is screened for. A phage display library covering 10(9) unique dodecapeptide sequences is incubated with nonassembling precursors. Phages which are able to catalyze formation of the self-assembling reaction product (via amide condensation) acquire an aggregate of reaction product, enabling separation by centrifugation. The thus selected phages can be amplified by infection of Escherichia coli. These phages are shown to catalyze amide condensation and hydrolysis. Kinetic analysis shows a minor role for substrate binding. The approach enables discovery and mass-production of biocatalytic phages.

摘要

发现适用于苛刻水相反应的新型催化剂具有挑战性。在此,我们描述了一种通过利用所筛选催化反应产物的局部组装来选择催化噬菌体的方法。将一个覆盖10⁹个独特十二肽序列的噬菌体展示文库与非组装前体一起孵育。能够催化自组装反应产物形成(通过酰胺缩合)的噬菌体获得反应产物聚集体,从而能够通过离心分离。如此筛选出的噬菌体可通过感染大肠杆菌进行扩增。这些噬菌体被证明能催化酰胺缩合和水解反应。动力学分析表明底物结合作用较小。该方法能够实现生物催化噬菌体的发现和大规模生产。

相似文献

1
Discovery of catalytic phages by biocatalytic self-assembly.
J Am Chem Soc. 2014 Nov 12;136(45):15893-6. doi: 10.1021/ja509393p. Epub 2014 Oct 29.
3
Identification of a motif for HLA-DR1 binding peptides using M13 display libraries.
J Exp Med. 1992 Oct 1;176(4):1007-13. doi: 10.1084/jem.176.4.1007.
4
Site directed biotinylation of filamentous phage structural proteins.
Virol J. 2011 Nov 1;8:495. doi: 10.1186/1743-422X-8-495.
6
Biocatalytic amide condensation and gelation controlled by light.
Chem Commun (Camb). 2014 May 28;50(41):5462-4. doi: 10.1039/c4cc01431f.
8
Chemostat studies of bacteriophage M13 infected Escherichia coli JM109 for continuous ssDNA production.
J Biotechnol. 2017 Sep 20;258:92-100. doi: 10.1016/j.jbiotec.2017.06.409. Epub 2017 Jun 20.
10
Surface rigidity change of Escherichia coli after filamentous bacteriophage infection.
Langmuir. 2009 Apr 21;25(8):4607-14. doi: 10.1021/la8036346.

引用本文的文献

1
Site-selective peptide bond hydrolysis and ligation in water by short peptide-based assemblies.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2321396121. doi: 10.1073/pnas.2321396121. Epub 2024 Jul 23.
2
Manually curated dataset of catalytic peptides for ester hydrolysis.
Data Brief. 2023 Jun 5;48:109290. doi: 10.1016/j.dib.2023.109290. eCollection 2023 Jun.
3
Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups.
ACS Appl Bio Mater. 2023 Feb 20;6(2):384-409. doi: 10.1021/acsabm.2c01041. Epub 2023 Feb 3.
4
Mega-High-Throughput Screening Platform for the Discovery of Biologically Relevant Sequence-Defined Non-Natural Polymers.
ACS Cent Sci. 2022 Jan 26;8(1):86-101. doi: 10.1021/acscentsci.1c01041. Epub 2022 Jan 11.
5
Discovery of phosphotyrosine-binding oligopeptides with supramolecular target selectivity.
Chem Sci. 2021 Dec 7;13(1):210-217. doi: 10.1039/d1sc04420f. eCollection 2021 Dec 22.
6
Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures.
Biomacromolecules. 2021 May 10;22(5):1835-1855. doi: 10.1021/acs.biomac.1c00240. Epub 2021 Apr 12.
8
Discovery of Surfactant-Like Peptides from a Phage-Displayed Peptide Library.
Viruses. 2020 Dec 15;12(12):1442. doi: 10.3390/v12121442.
9
Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids.
Chembiochem. 2021 Feb 2;22(3):585-591. doi: 10.1002/cbic.202000645. Epub 2020 Nov 6.
10
Biocatalysis of D,L-Peptide Nanofibrillar Hydrogel.
Molecules. 2020 Jun 30;25(13):2995. doi: 10.3390/molecules25132995.

本文引用的文献

1
Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: a novel hydrolase model.
J Mater Chem B. 2013 May 7;1(17):2297-2304. doi: 10.1039/c3tb20156b. Epub 2013 Mar 25.
2
Short peptides self-assemble to produce catalytic amyloids.
Nat Chem. 2014 Apr;6(4):303-9. doi: 10.1038/nchem.1894. Epub 2014 Mar 16.
3
Spatial and directional control over self-assembly using catalytic micropatterned surfaces.
Angew Chem Int Ed Engl. 2014 Apr 14;53(16):4132-6. doi: 10.1002/anie.201310776. Epub 2014 Mar 11.
5
Substrate selective catalytic molecular hydrogels: the role of the hydrophobic effect.
Chem Commun (Camb). 2013 Nov 21;49(90):10608-10. doi: 10.1039/c3cc45623d.
6
Exploiting localized surface binding effects to enhance the catalytic reactivity of peptide-capped nanoparticles.
J Am Chem Soc. 2013 Jul 31;135(30):11048-54. doi: 10.1021/ja402215t. Epub 2013 Jul 18.
7
Proteins from an unevolved library of de novo designed sequences bind a range of small molecules.
ACS Synth Biol. 2012 Apr 20;1(4):130-8. doi: 10.1021/sb200018e. Epub 2012 Apr 2.
8
Selective transformations of complex molecules are enabled by aptameric protective groups.
Nat Chem. 2012 Oct;4(10):789-93. doi: 10.1038/nchem.1402. Epub 2012 Jul 22.
9
Self-assembly of a catalytic multivalent peptide-nanoparticle complex.
J Am Chem Soc. 2012 May 23;134(20):8396-9. doi: 10.1021/ja302754h. Epub 2012 May 10.
10
Discovery of catalytic peptides for inorganic nanocrystal synthesis by a combinatorial phage display approach.
Angew Chem Int Ed Engl. 2011 Nov 4;50(45):10585-8. doi: 10.1002/anie.201102582. Epub 2011 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验