Suppr超能文献

人类醛固酮合成酶基因多态性促进微小RNA结合并调节基因表达。

Human aldosterone synthase gene polymorphism promotes miRNA binding and regulates gene expression.

作者信息

Maharjan Shreekrishna, Mopidevi Brahmaraju, Kaw Meenakshi Kaul, Puri Nitin, Kumar Ashok

机构信息

Department of Physiology and Pharmacology, University of Toledo Health Science Campus, Toledo, Ohio.

Department of Physiology and Pharmacology, University of Toledo Health Science Campus, Toledo, Ohio

出版信息

Physiol Genomics. 2014 Dec 15;46(24):860-5. doi: 10.1152/physiolgenomics.00084.2014. Epub 2014 Oct 28.

Abstract

Hypertension is a serious risk factor for myocardial infarction, heart failure, vascular disease, stroke, and renal failure. Like other complex diseases, hypertension is caused by a combination of genetic and environmental factors. The renin-angiotensin-aldosterone system plays an important role in the regulation of blood pressure. The octapeptide angiotensin II (ANG II) is one of the most active vasopressor agents and is obtained from the precursor molecule, angiotensinogen, by the combined proteolytic action of renin and angiotensin-converting enzyme. ANG II increases the expression of aldosterone synthase (coded by Cyp11B2 gene), which is the rate-limiting enzyme in the biosynthesis of aldosterone. Previous studies have shown that increased expression of aldosterone synthase increases blood pressure and cardiac hypertrophy in transgenic mice. Human Cyp11B2 gene has a T/C polymorphism at -344 positions in its 5'-untranslated region (UTR), and the -344T allele is associated with hypertension. Human Cyp11B2 gene also has an A/G polymorphism at 735 position in its 3'-UTR (rs28491316) that is in linkage disequilibrium with single nucleotide polymorphism at -344. We show here that 1) microRNA (miR)-766 binds to the 735G-allele and not the 735A-allele of the hCyp11B2 gene and 2) transfection of miR-766 reduces the human aldosterone synthase mRNA and protein level in human adrenocortical cells H295R. These studies suggest that miR-766 may downregulate the expression of human aldosterone synthase gene and reduce blood pressure in human subjects containing -344T allele.

摘要

高血压是心肌梗死、心力衰竭、血管疾病、中风和肾衰竭的严重风险因素。与其他复杂疾病一样,高血压由遗传和环境因素共同导致。肾素-血管紧张素-醛固酮系统在血压调节中起重要作用。八肽血管紧张素II(ANG II)是最活跃的血管加压剂之一,通过肾素和血管紧张素转换酶的联合蛋白水解作用从前体分子血管紧张素原获得。ANG II增加醛固酮合酶(由Cyp11B2基因编码)的表达,醛固酮合酶是醛固酮生物合成中的限速酶。先前的研究表明,醛固酮合酶表达增加会导致转基因小鼠血压升高和心脏肥大。人类Cyp11B2基因在其5'-非翻译区(UTR)的-344位置存在T/C多态性,-344T等位基因与高血压相关。人类Cyp11B2基因在其3'-UTR的735位置(rs28491316)也存在A/G多态性,该多态性与-344处的单核苷酸多态性处于连锁不平衡状态。我们在此表明:1)微小RNA(miR)-766与hCyp11B2基因的735G等位基因而非735A等位基因结合;2)转染miR-766可降低人肾上腺皮质细胞H295R中的人醛固酮合酶mRNA和蛋白水平。这些研究表明,miR-766可能下调含-344T等位基因的人类受试者中醛固酮合酶基因的表达并降低血压。

相似文献

1
Human aldosterone synthase gene polymorphism promotes miRNA binding and regulates gene expression.
Physiol Genomics. 2014 Dec 15;46(24):860-5. doi: 10.1152/physiolgenomics.00084.2014. Epub 2014 Oct 28.
5
Variable transcriptional regulation of the human aldosterone synthase gene causes salt-dependent high blood pressure in transgenic mice.
Circ Cardiovasc Genet. 2015 Feb;8(1):30-9. doi: 10.1161/CIRCGENETICS.114.000694. Epub 2014 Dec 12.
6
Effects of intron conversion in the human gene on its transcription and blood pressure regulation in transgenic mice.
J Biol Chem. 2020 Aug 7;295(32):11068-11081. doi: 10.1074/jbc.RA120.013047. Epub 2020 Jun 15.
9
[Effect of CYP11B2 gene -344T/C polymorphism on renin-angiotensin-aldosterone system activity and blood pressure response to hydrochlorothiazide].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2012 Feb;29(1):68-71. doi: 10.3760/cma.j.issn.1003-9406.2012.01.017.

引用本文的文献

1
Comprehensive analysis of the ceRNA network in coronary artery disease.
Sci Rep. 2021 Dec 20;11(1):24279. doi: 10.1038/s41598-021-03688-9.
2
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling.
Int J Mol Sci. 2021 Apr 30;22(9):4762. doi: 10.3390/ijms22094762.
4
Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases.
J Med Genet. 2018 Nov;55(11):713-720. doi: 10.1136/jmedgenet-2018-105387. Epub 2018 Sep 3.
5
MicroRNA and Heart Failure.
Int J Mol Sci. 2016 Apr 6;17(4):502. doi: 10.3390/ijms17040502.
6
Role of MicroRNAs in Renin-Angiotensin-Aldosterone System-Mediated Cardiovascular Inflammation and Remodeling.
Int J Inflam. 2015;2015:101527. doi: 10.1155/2015/101527. Epub 2015 May 6.
7
MicroRNAs and the regulation of aldosterone signaling in the kidney.
Am J Physiol Cell Physiol. 2015 Apr 1;308(7):C521-7. doi: 10.1152/ajpcell.00026.2015. Epub 2015 Feb 11.

本文引用的文献

1
Primary aldosteronism and low-renin hypertension: a continuum?
Nephrol Dial Transplant. 2013 Jul;28(7):1625-7. doi: 10.1093/ndt/gft052. Epub 2013 Mar 27.
2
Investing in high blood pressure research: a national institutes of health perspective.
Hypertension. 2013 Apr;61(4):757-61. doi: 10.1161/HYPERTENSIONAHA.111.00770. Epub 2013 Feb 25.
3
Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone.
Nephrol Dial Transplant. 2013 Jul;28(7):1787-93. doi: 10.1093/ndt/gfs587. Epub 2013 Feb 1.
5
Under pressure: the search for the essential mechanisms of hypertension.
Nat Med. 2011 Nov 7;17(11):1402-9. doi: 10.1038/nm.2541.
6
Mixed messages on blood pressure goals.
Hypertension. 2011 Jun;57(6):1039-40. doi: 10.1161/HYPERTENSIONAHA.111.170514. Epub 2011 May 9.
9
Association of the -344C/T aldosterone synthase (CYP11B2) gene variant with hypertension and stroke.
J Neurol Sci. 2010 Sep 15;296(1-2):34-8. doi: 10.1016/j.jns.2010.06.013. Epub 2010 Jul 3.
10
Origins and Mechanisms of miRNAs and siRNAs.
Cell. 2009 Feb 20;136(4):642-55. doi: 10.1016/j.cell.2009.01.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验