Suppr超能文献

拟南芥中的组织特异性生物钟表现出不对称耦合。

Tissue-specific clocks in Arabidopsis show asymmetric coupling.

作者信息

Endo Motomu, Shimizu Hanako, Nohales Maria A, Araki Takashi, Kay Steve A

机构信息

1] Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8501, Japan [2] Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.

出版信息

Nature. 2014 Nov 20;515(7527):419-22. doi: 10.1038/nature13919. Epub 2014 Oct 29.

Abstract

Many organisms rely on a circadian clock system to adapt to daily and seasonal environmental changes. The mammalian circadian clock consists of a central clock in the suprachiasmatic nucleus that has tightly coupled neurons and synchronizes other clocks in peripheral tissues. Plants also have a circadian clock, but plant circadian clock function has long been assumed to be uncoupled. Only a few studies have been able to show weak, local coupling among cells. Here, by implementing two novel techniques, we have performed a comprehensive tissue-specific analysis of leaf tissues, and show that the vasculature and mesophyll clocks asymmetrically regulate each other in Arabidopsis. The circadian clock in the vasculature has characteristics distinct from other tissues, cycles robustly without environmental cues, and affects circadian clock regulation in other tissues. Furthermore, we found that vasculature-enriched genes that are rhythmically expressed are preferentially expressed in the evening, whereas rhythmic mesophyll-enriched genes tend to be expressed in the morning. Our results set the stage for a deeper understanding of how the vasculature circadian clock in plants regulates key physiological responses such as flowering time.

摘要

许多生物体依靠生物钟系统来适应每日和季节性的环境变化。哺乳动物的生物钟由视交叉上核中的中央时钟组成,该中央时钟具有紧密耦合的神经元,并使外周组织中的其他时钟同步。植物也有生物钟,但长期以来人们一直认为植物生物钟功能是解耦的。只有少数研究能够显示细胞之间存在微弱的局部耦合。在这里,通过实施两种新技术,我们对叶片组织进行了全面的组织特异性分析,并表明拟南芥中维管系统和叶肉生物钟相互不对称调节。维管系统中的生物钟具有与其他组织不同的特征,在没有环境线索的情况下能强劲地循环,并影响其他组织中的生物钟调节。此外,我们发现有节律地表达的富含维管系统的基因在傍晚优先表达,而有节律的富含叶肉的基因往往在早晨表达。我们的研究结果为更深入了解植物维管系统生物钟如何调节开花时间等关键生理反应奠定了基础。

相似文献

1
Tissue-specific clocks in Arabidopsis show asymmetric coupling.
Nature. 2014 Nov 20;515(7527):419-22. doi: 10.1038/nature13919. Epub 2014 Oct 29.
2
A Localized Pseudomonas syringae Infection Triggers Systemic Clock Responses in Arabidopsis.
Curr Biol. 2018 Feb 19;28(4):630-639.e4. doi: 10.1016/j.cub.2018.01.001. Epub 2018 Feb 1.
3
Photoperiod sensitivity of the Arabidopsis circadian clock is tissue-specific.
Plant Signal Behav. 2015;10(6):e1010933. doi: 10.1080/15592324.2015.1010933.
4
Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.
Plant J. 2012 Oct;72(1):154-61. doi: 10.1111/j.1365-313X.2012.05073.x. Epub 2012 Jul 24.
5
Oscillator networks with tissue-specific circadian clocks in plants.
Semin Cell Dev Biol. 2018 Nov;83:78-85. doi: 10.1016/j.semcdb.2017.09.002. Epub 2017 Sep 8.
6
Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6757-62. doi: 10.1073/pnas.1118814109. Epub 2012 Apr 10.
8
Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.
PLoS One. 2011;6(10):e26968. doi: 10.1371/journal.pone.0026968. Epub 2011 Oct 31.
9
Circadian Rhythms and Reproductive Phenology Covary in a Natural Plant Population.
J Biol Rhythms. 2018 Jun;33(3):245-254. doi: 10.1177/0748730418764525. Epub 2018 Mar 28.
10
Dependence and independence of the root clock on the shoot clock in Arabidopsis.
Genes Genomics. 2018 Oct;40(10):1063-1068. doi: 10.1007/s13258-018-0710-4. Epub 2018 Jun 13.

引用本文的文献

6
Stable and dynamic gene expression patterns over diurnal and developmental timescales in Arabidopsis thaliana.
New Phytol. 2025 May;246(3):1147-1162. doi: 10.1111/nph.70023. Epub 2025 Mar 20.
8
Dual roles of pear EARLY FLOWERING 4 -like genes in regulating flowering and leaf senescence.
BMC Plant Biol. 2024 Nov 25;24(1):1117. doi: 10.1186/s12870-024-05850-7.
9
GIGANTEA adjusts the response to shade at dusk by directly impinging on PHYTOCHROME INTERACTING FACTOR 7 function.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2315778121. doi: 10.1073/pnas.2315778121. Epub 2024 Jul 16.
10
AraLeTA: An Arabidopsis leaf expression atlas across diurnal and developmental scales.
Plant Physiol. 2024 Jun 28;195(3):1941-1953. doi: 10.1093/plphys/kiae117.

本文引用的文献

1
cis-regulatory requirements for tissue-specific programs of the circadian clock.
Curr Biol. 2014 Jan 6;24(1):1-10. doi: 10.1016/j.cub.2013.11.017. Epub 2013 Dec 12.
3
Complexity in the wiring and regulation of plant circadian networks.
Curr Biol. 2012 Aug 21;22(16):R648-57. doi: 10.1016/j.cub.2012.07.025.
4
Interaction of central and peripheral clocks in physiological regulation.
Prog Brain Res. 2012;199:163-181. doi: 10.1016/B978-0-444-59427-3.00030-7.
5
Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6757-62. doi: 10.1073/pnas.1118814109. Epub 2012 Apr 10.
6
Central and peripheral circadian clocks in mammals.
Annu Rev Neurosci. 2012;35:445-62. doi: 10.1146/annurev-neuro-060909-153128. Epub 2012 Apr 5.
7
EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock.
Plant Cell. 2012 Feb;24(2):428-43. doi: 10.1105/tpc.111.093807. Epub 2012 Feb 10.
8
Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.
Plant Cell. 2011 Oct;23(10):3684-95. doi: 10.1105/tpc.111.085852. Epub 2011 Oct 4.
9
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth.
Nature. 2011 Jul 13;475(7356):398-402. doi: 10.1038/nature10182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验