Suppr超能文献

相似文献

1
Light-driven water oxidation for solar fuels.
Coord Chem Rev. 2012 Nov 1;256(21-22):2503-2520. doi: 10.1016/j.ccr.2012.03.031.
2
Visible light water splitting using dye-sensitized oxide semiconductors.
Acc Chem Res. 2009 Dec 21;42(12):1966-73. doi: 10.1021/ar9002398.
3
Solar fuels via artificial photosynthesis.
Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b.
5
Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
Molecules. 2015 Apr 15;20(4):6739-93. doi: 10.3390/molecules20046739.
6
Dye-sensitized photoelectrochemical water oxidation through a buried junction.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):6946-6951. doi: 10.1073/pnas.1804728115. Epub 2018 Jun 18.
7
Solar water splitting in a molecular photoelectrochemical cell.
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20008-13. doi: 10.1073/pnas.1319628110. Epub 2013 Nov 25.
8
Electron injection dynamics in high-potential porphyrin photoanodes.
Acc Chem Res. 2015 May 19;48(5):1423-31. doi: 10.1021/ar500363q. Epub 2015 May 4.
9
Water splitting on semiconductor catalysts under visible-light irradiation.
ChemSusChem. 2009;2(6):471-85. doi: 10.1002/cssc.200900018.
10
Organic Semiconductors as Photoanodes for Solar-driven Photoelectrochemical Fuel Production.
Chimia (Aarau). 2021 Mar 31;75(3):169-179. doi: 10.2533/chimia.2021.169.

引用本文的文献

1
Dye-Sensitized Solar Cells Based on Cu(I) Complexes Containing Catechol Anchor Groups That Operate with Aqueous Electrolytes.
JACS Au. 2025 Jul 29;5(8):3960-3973. doi: 10.1021/jacsau.5c00601. eCollection 2025 Aug 25.
3
Atomically dispersed Ir catalysts exhibit support-dependent water oxidation kinetics during photocatalysis.
Chem Sci. 2023 May 26;14(24):6601-6607. doi: 10.1039/d3sc00603d. eCollection 2023 Jun 21.
6
Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting.
Chem Rev. 2023 Jan 11;123(1):445-490. doi: 10.1021/acs.chemrev.2c00460. Epub 2022 Dec 12.
8
From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II.
Photosynth Res. 2022 May;152(2):107-133. doi: 10.1007/s11120-022-00912-z. Epub 2022 Apr 9.
9
Photodriven water oxidation initiated by a surface bound chromophore-donor-catalyst assembly.
Chem Sci. 2021 Oct 11;12(43):14441-14450. doi: 10.1039/d1sc03896f. eCollection 2021 Nov 10.
10
Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO.
Chem Sci. 2020 Nov 10;12(3):946-959. doi: 10.1039/d0sc04344c.

本文引用的文献

3
Thiocyanate linkage isomerism in a ruthenium polypyridyl complex.
Inorg Chem. 2011 Dec 5;50(23):11938-46. doi: 10.1021/ic200950e. Epub 2011 Nov 8.
6
Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts.
Chem Rev. 2012 Mar 14;112(3):1536-54. doi: 10.1021/cr2002905. Epub 2011 Oct 24.
7
Review on modern advances of chemical methods for the introduction of a phosphonic acid group.
Chem Rev. 2011 Dec 14;111(12):7981-8006. doi: 10.1021/cr2002646. Epub 2011 Oct 19.
8
Photosensitized water oxidation by use of a bioinspired manganese catalyst.
Angew Chem Int Ed Engl. 2011 Dec 2;50(49):11715-8. doi: 10.1002/anie.201104355. Epub 2011 Oct 7.
9
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts.
Science. 2011 Nov 4;334(6056):645-8. doi: 10.1126/science.1209816. Epub 2011 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验