Young Karin J, Martini Lauren A, Milot Rebecca L, Snoeberger Robert C, Batista Victor S, Schmuttenmaer Charles A, Crabtree Robert H, Brudvig Gary W
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA.
Coord Chem Rev. 2012 Nov 1;256(21-22):2503-2520. doi: 10.1016/j.ccr.2012.03.031.
Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode. Inspired by this system, more recent work has focused on functionalizing nanoporous TiO or other semiconductor surfaces with molecular adsorbates, including chromophores and catalysts that absorb visible light and generate electricity (, dye-sensitized solar cells) or trigger water oxidation at low overpotentials (, photocatalytic cells). The physics involved in harnessing multiple photochemical events for multielectron reactions, as required in the four-electron water oxidation process, has been the subject of much experimental and computational study. In spite of significant advances with regard to individual components, the development of highly efficient photocatalytic cells for solar water splitting remains an outstanding challenge. This article reviews recent progress in the field with emphasis on water-oxidation photoanodes inspired by the design of functionalized thin film semiconductors of typical dye-sensitized solar cells.
光驱动水氧化是将阳光转化为可储存化学燃料的关键步骤。1972年,藤岛和本田报道了首例光电化学水氧化。在他们的体系中,用紫外线照射TiO,在阳极产生氧气,在铂阴极产生氢气。受该体系启发,近期的工作聚焦于用分子吸附物(包括吸收可见光并发电的发色团和催化剂,如染料敏化太阳能电池)或在低过电位下引发水氧化的物质(如光催化电池)对纳米多孔TiO或其他半导体表面进行功能化。在四电子水氧化过程中,利用多个光化学事件进行多电子反应所涉及的物理过程一直是大量实验和计算研究的主题。尽管在各个组件方面取得了重大进展,但开发用于太阳能水分解的高效光催化电池仍然是一项艰巨的挑战。本文综述了该领域的最新进展,重点关注受典型染料敏化太阳能电池功能化薄膜半导体设计启发的水氧化光阳极。