Augé Robert M, Toler Heather D, Saxton Arnold M
Department of Plant Sciences, University of Tennessee Knoxville, TN, USA.
Department of Animal Sciences, University of Tennessee Knoxville, TN, USA.
Front Plant Sci. 2014 Oct 17;5:562. doi: 10.3389/fpls.2014.00562. eCollection 2014.
Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na(+) toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K(+), increasing root and shoot K(+) concentrations by an average of 47 and 42%, respectively, and root and shoot K(+)/Na(+) ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl(-) concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca(++) concentration and root concentrations of Na(+), Mg(++) and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K(+)/Na(+) ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K(+)/Na(+) ratio showed a positive response to root colonization, and root K(+)/Na(+) ratio a negative response to time of exposure to NaCl.
丛枝菌根(AM)共生可以通过多种方式增强植物对NaCl胁迫的抗性。两个基本作用涉及渗透调节和离子调节。通过刺激溶质积累,这种共生关系可以帮助植物维持最佳水分平衡并减轻Na(+)毒性。AM对渗透溶质的影响大小差异很大且无法预测。我们进行了一项荟萃分析,以确定暴露于NaCl后AM对22种植物溶质特征的影响大小,并研究实验条件如何影响AM效应。综合各项研究来看,AM共生对植物钾离子有显著影响,使根和地上部钾离子浓度分别平均增加47%和42%,根和地上部钾离子/钠离子比率分别增加47%和58%。在有机溶质中,可溶性碳水化合物受影响最大,AM使地上部和根部的可溶性碳水化合物分别增加28%和19%。这种共生关系对几个特征没有一致的影响,包括根中甘氨酸甜菜碱浓度、根或地上部氯离子浓度、叶片渗透势或地上部脯氨酸或多胺浓度。AM对地上部钙离子浓度以及根中钠离子、镁离子和脯氨酸浓度的影响非常小。关于这些化合物AM赋予的益处的解释可能最好在个体研究的背景下进行衡量。地上部和根部的钾离子/钠离子比率以及根中脯氨酸浓度在研究之间存在显著的异质性,我们研究了九个调节变量,以探索哪些因素可能解释菌根对这些参数影响的差异。具有显著影响的调节因素包括AM分类群、宿主类型、是否存在AM促生长作用、胁迫严重程度以及NaCl是构成实验性盐胁迫处理的一部分还是全部。地上部钾离子/钠离子比率的元回归显示对根部定殖呈正响应,而根部钾离子/钠离子比率对暴露于NaCl的时间呈负响应。