Suppr超能文献

生物大分子结晶条件的优化。

Optimization of crystallization conditions for biological macromolecules.

作者信息

McPherson Alexander, Cudney Bob

机构信息

Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA.

Hampton Research, 34 Journey, Aliso Viejo, CA 92656-3317, USA.

出版信息

Acta Crystallogr F Struct Biol Commun. 2014 Nov;70(Pt 11):1445-67. doi: 10.1107/S2053230X14019670. Epub 2014 Oct 31.

Abstract

For the successful X-ray structure determination of macromolecules, it is first necessary to identify, usually by matrix screening, conditions that yield some sort of crystals. Initial crystals are frequently microcrystals or clusters, and often have unfavorable morphologies or yield poor diffraction intensities. It is therefore generally necessary to improve upon these initial conditions in order to obtain better crystals of sufficient quality for X-ray data collection. Even when the initial samples are suitable, often marginally, refinement of conditions is recommended in order to obtain the highest quality crystals that can be grown. The quality of an X-ray structure determination is directly correlated with the size and the perfection of the crystalline samples; thus, refinement of conditions should always be a primary component of crystal growth. The improvement process is referred to as optimization, and it entails sequential, incremental changes in the chemical parameters that influence crystallization, such as pH, ionic strength and precipitant concentration, as well as physical parameters such as temperature, sample volume and overall methodology. It also includes the application of some unique procedures and approaches, and the addition of novel components such as detergents, ligands or other small molecules that may enhance nucleation or crystal development. Here, an attempt is made to provide guidance on how optimization might best be applied to crystal-growth problems, and what parameters and factors might most profitably be explored to accelerate and achieve success.

摘要

为成功测定大分子的X射线结构,首先通常需要通过基质筛选来确定能够产生某种晶体的条件。最初得到的晶体往往是微晶或晶体簇,并且常常具有不理想的形态或产生较差的衍射强度。因此,一般有必要对这些初始条件进行改进,以获得质量足够好的晶体用于X射线数据收集。即使初始样品勉强合适,为了获得能够生长出的最高质量晶体,也建议对条件进行优化。X射线结构测定的质量与晶体样品的大小和完美程度直接相关;因此,条件优化始终应是晶体生长的主要组成部分。这种改进过程称为优化,它需要对影响结晶的化学参数(如pH值、离子强度和沉淀剂浓度)以及物理参数(如温度、样品体积和整体方法)进行连续、渐进的改变。它还包括应用一些独特的程序和方法,以及添加新型成分,如洗涤剂、配体或其他可能增强成核或晶体生长的小分子。在此,我们试图就如何将优化最佳地应用于晶体生长问题,以及探索哪些参数和因素最有可能加速并取得成功提供指导。

相似文献

1
Optimization of crystallization conditions for biological macromolecules.
Acta Crystallogr F Struct Biol Commun. 2014 Nov;70(Pt 11):1445-67. doi: 10.1107/S2053230X14019670. Epub 2014 Oct 31.
2
Crystallization of macromolecules.
Curr Protoc Protein Sci. 2011 Nov;Chapter 17:17.4.1-17.4.26. doi: 10.1002/0471140864.ps1704s66.
3
Crystallization of macromolecules.
Curr Protoc Protein Sci. 2004 Feb;Chapter 17:17.4.1-17.4.25. doi: 10.1002/0471140864.ps1704s34.
6
The MORPHEUS II protein crystallization screen.
Acta Crystallogr F Struct Biol Commun. 2015 Jul;71(Pt 7):831-7. doi: 10.1107/S2053230X1500967X. Epub 2015 Jun 27.
8
Protein Crystallization.
Methods Mol Biol. 2017;1607:17-50. doi: 10.1007/978-1-4939-7000-1_2.
9
A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.
Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):1901-10. doi: 10.1107/S0907444913016296. Epub 2013 Sep 20.
10
Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization.
Acta Crystallogr F Struct Biol Commun. 2014 Apr;70(Pt 4):384-403. doi: 10.1107/S2053230X14004816. Epub 2014 Mar 29.

引用本文的文献

1
Automation of protein crystallization scaleup via Opentrons-2 liquid handling.
SLAS Technol. 2025 Jun;32:100268. doi: 10.1016/j.slast.2025.100268. Epub 2025 Mar 16.
2
PDBe tools for an in-depth analysis of small molecules in the Protein Data Bank.
Protein Sci. 2025 Apr;34(4):e70084. doi: 10.1002/pro.70084.
3
On-the-fly resolution enhancement in X-ray protein crystallography using electric field.
Eur Biophys J. 2025 Feb;54(1-2):89-95. doi: 10.1007/s00249-025-01731-5. Epub 2025 Jan 22.
4
Automated Nanoliter Volume Assay Optimization on a Cost-Effective Microfluidic Disc.
Anal Chem. 2025 Jan 14;97(1):300-311. doi: 10.1021/acs.analchem.4c04210. Epub 2024 Dec 28.
6
Spectroscopic insights into multi-phase protein crystallization in complex lysate using Raman spectroscopy and a particle-free bypass.
Front Bioeng Biotechnol. 2024 May 15;12:1397465. doi: 10.3389/fbioe.2024.1397465. eCollection 2024.
8
Cromoglycate mesogen forms isodesmic assemblies promoted by peptides and induces aggregation of a range of proteins.
RSC Adv. 2018 Aug 21;8(52):29598-29606. doi: 10.1039/c8ra05226c. eCollection 2018 Aug 20.
9
The FUSION protein crystallization screen.
J Appl Crystallogr. 2022 Mar 11;55(Pt 2):310-319. doi: 10.1107/S1600576722001765. eCollection 2022 Apr 1.
10
Stick, stretch, and scan imaging method for DNA and filaments.
RSC Adv. 2021 Nov 9;11(57):36060-36065. doi: 10.1039/d1ra07067c. eCollection 2021 Nov 4.

本文引用的文献

1
Microseed matrix screening for optimization in protein crystallization: what have we learned?
Acta Crystallogr F Struct Biol Commun. 2014 Sep;70(Pt 9):1117-26. doi: 10.1107/S2053230X14015507. Epub 2014 Aug 29.
2
Crystallization screening: the influence of history on current practice.
Acta Crystallogr F Struct Biol Commun. 2014 Jul;70(Pt 7):835-53. doi: 10.1107/S2053230X1401262X. Epub 2014 Jun 27.
3
Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization.
Acta Crystallogr F Struct Biol Commun. 2014 Apr;70(Pt 4):384-403. doi: 10.1107/S2053230X14004816. Epub 2014 Mar 29.
4
Introduction to protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):2-20. doi: 10.1107/S2053230X13033141. Epub 2013 Dec 24.
5
A historical perspective on protein crystallization from 1840 to the present day.
FEBS J. 2013 Dec;280(24):6456-97. doi: 10.1111/febs.12580. Epub 2013 Nov 25.
6
Diffraction study of protein crystals grown in cryoloops and micromounts.
J Appl Crystallogr. 2010 Dec 1;43(Pt 6):1513-1518. doi: 10.1107/S0021889810040409. Epub 2010 Oct 20.
7
In-plate protein crystallization, in situ ligand soaking and X-ray diffraction.
Acta Crystallogr D Biol Crystallogr. 2011 Sep;67(Pt 9):747-55. doi: 10.1107/S0907444911023249. Epub 2011 Aug 9.
8
Protein crystallization facilitated by molecularly imprinted polymers.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11081-6. doi: 10.1073/pnas.1016539108. Epub 2011 Jun 20.
9
Comparison of fluorescence and light scattering based methods to assess formation and stability of protein-protein complexes.
J Struct Biol. 2011 Aug;175(2):216-23. doi: 10.1016/j.jsb.2011.04.006. Epub 2011 Apr 23.
10
What recent ribosome structures have revealed about the mechanism of translation.
Nature. 2009 Oct 29;461(7268):1234-42. doi: 10.1038/nature08403. Epub 2009 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验