Suppr超能文献

前列腺癌中的脂质代谢

Lipid metabolism in prostate cancer.

作者信息

Wu Xinyu, Daniels Garrett, Lee Peng, Monaco Marie E

机构信息

Department of Pathology,Physiology, New York University School of Medicine New York, NY, USA.

Department of Pathology,Physiology, New York University School of Medicine New York, NY, USA ; VA New York Harbor Healthcare System New York, NY, USA.

出版信息

Am J Clin Exp Urol. 2014 Jul 12;2(2):111-20. eCollection 2014.

Abstract

The malignant transformation of cells requires adaptations across multiple metabolic processes to satisfy the energy required for their increased rate of proliferation. Dysregulation of lipid metabolism has been a hallmark of the malignant phenotype; increased lipid accumulation secondary to changes in the levels of a variety of lipid metabolic enzymes has been documented in a variety of tumors, including prostate. Alterations in prostate lipid metabolism include upregulation of several lipogenic enzymes as well as of enzymes that function to oxidize fatty acids as an energy source. Cholesterol metabolism and phospholipid metabolism are also affected. With respect to lipogenesis, most studies have concentrated on increased expression and activity ofthe de novo fatty acid synthesis enzyme, fatty acid synthase (FASN), with suggestions that FASN might function as an oncogene. A central role for fatty acid oxidation in supplying energy to the prostate cancer cell is supported by the observation that the peroxisomal enzyme, α-methylacyl-CoA racemase (AMACR), which facilitates the transformation of branched chain fatty acids to a form suitable for β-oxidation, is highly overexpressed in prostate cancer compared with normal prostate. Exploitation of the alterations in lipid metabolic pathways in prostate cancer could result in the development of new therapeutic modalities as well as provide candidates for new prognostic and predictive biomarkers. AMACR has already proven to be a valuable biomarker in distinguishing normal from malignant prostate tissue, and is used routinely in clinical practice.

摘要

细胞的恶性转化需要在多个代谢过程中进行适应性改变,以满足其增殖速率增加所需要的能量。脂质代谢失调一直是恶性表型的一个标志;继发于多种脂质代谢酶水平变化的脂质积累增加已在包括前列腺癌在内的多种肿瘤中得到证实。前列腺脂质代谢的改变包括几种生脂酶以及将脂肪酸作为能量来源进行氧化的酶的上调。胆固醇代谢和磷脂代谢也受到影响。关于脂肪生成,大多数研究集中在从头脂肪酸合成酶脂肪酸合酶(FASN)的表达和活性增加上,有人认为FASN可能起癌基因的作用。脂肪酸氧化在为前列腺癌细胞提供能量方面的核心作用得到了以下观察结果的支持:过氧化物酶体酶α-甲基酰基辅酶A消旋酶(AMACR)促进支链脂肪酸转化为适合β-氧化的形式,与正常前列腺相比,其在前列腺癌中高度过表达。利用前列腺癌脂质代谢途径的改变可能会导致新治疗方法的开发,并为新的预后和预测生物标志物提供候选物。AMACR已被证明是区分正常和恶性前列腺组织的有价值的生物标志物,并在临床实践中常规使用。

相似文献

1
Lipid metabolism in prostate cancer.
Am J Clin Exp Urol. 2014 Jul 12;2(2):111-20. eCollection 2014.
5
Androgens and the control of lipid metabolism in human prostate cancer cells.
J Steroid Biochem Mol Biol. 1998 Apr;65(1-6):191-8. doi: 10.1016/s0960-0760(97)00187-8.
6
Elevated alpha-methylacyl-CoA racemase enzymatic activity in prostate cancer.
Am J Pathol. 2004 Mar;164(3):787-93. doi: 10.1016/s0002-9440(10)63167-7.
7
Current Knowledge on the Function of α-Methyl Acyl-CoA Racemase in Human Diseases.
Front Mol Biosci. 2020 Jul 14;7:153. doi: 10.3389/fmolb.2020.00153. eCollection 2020.
9
Lipogenic effects of androgen signaling in normal and malignant prostate.
Asian J Urol. 2020 Jul;7(3):258-270. doi: 10.1016/j.ajur.2019.12.003. Epub 2019 Dec 10.
10
Metabolic alterations and targeted therapies in prostate cancer.
J Pathol. 2011 Jan;223(2):283-94. doi: 10.1002/path.2809. Epub 2010 Nov 16.

引用本文的文献

1
New frontiers in prostate cancer treatment from systemic therapy to targeted therapy.
EMBO Mol Med. 2025 Aug 4. doi: 10.1038/s44321-025-00282-8.
3
Metabolomic profile and its association with the diagnosis of prostate cancer: a systematic review.
J Cancer Res Clin Oncol. 2024 Dec 31;151(1):29. doi: 10.1007/s00432-024-06058-w.
4
Altered amino and fatty acids metabolism in Sudanese prostate cancer patients: insights from metabolic analysis.
J Circ Biomark. 2024 Dec 16;13:36-44. doi: 10.33393/jcb.2024.3146. eCollection 2024 Jan-Dec.
6
Overtone photothermal microscopy for high-resolution and high-sensitivity vibrational imaging.
Nat Commun. 2024 Jun 25;15(1):5374. doi: 10.1038/s41467-024-49691-2.
7
Fatty acid diet and prostate cancer: a treasure hunt or a wild goose chase?
Prostate Cancer Prostatic Dis. 2024 Jun 18. doi: 10.1038/s41391-024-00854-8.
8
Single-cell sequencing revealed metabolic reprogramming and its transcription factor regulatory network in prostate cancer.
Transl Oncol. 2024 Jun;44:101925. doi: 10.1016/j.tranon.2024.101925. Epub 2024 Mar 6.
9
Urinary fatty acid biomarkers for prostate cancer detection.
PLoS One. 2024 Feb 9;19(2):e0297615. doi: 10.1371/journal.pone.0297615. eCollection 2024.
10
Metabolic reprogramming directed by super-enhancers in tumors: An emerging landscape.
Mol Ther. 2024 Mar 6;32(3):572-579. doi: 10.1016/j.ymthe.2024.02.003. Epub 2024 Feb 6.

本文引用的文献

2
Inactivation of ATP citrate lyase by Cucurbitacin B: A bioactive compound from cucumber, inhibits prostate cancer growth.
Cancer Lett. 2014 Jul 10;349(1):15-25. doi: 10.1016/j.canlet.2014.03.015. Epub 2014 Mar 29.
4
Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.
PLoS One. 2013 Oct 14;8(10):e77060. doi: 10.1371/journal.pone.0077060. eCollection 2013.
5
Inhibition of human α-methylacyl CoA racemase (AMACR): a target for prostate cancer.
ChemMedChem. 2013 Oct;8(10):1643-7. doi: 10.1002/cmdc.201300179. Epub 2013 Aug 8.
7
Cancer metabolism: fatty acid oxidation in the limelight.
Nat Rev Cancer. 2013 Apr;13(4):227-32. doi: 10.1038/nrc3483. Epub 2013 Feb 28.
8
α-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S.
Prog Lipid Res. 2013 Apr;52(2):220-30. doi: 10.1016/j.plipres.2013.01.001. Epub 2013 Jan 29.
9
The role of choline in prostate cancer.
Clin Biochem. 2012 Dec;45(18):1548-53. doi: 10.1016/j.clinbiochem.2012.08.012. Epub 2012 Aug 19.
10
Cholesterol and prostate cancer.
Curr Opin Pharmacol. 2012 Dec;12(6):751-9. doi: 10.1016/j.coph.2012.07.006. Epub 2012 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验