Dodani Sheel C, Firl Alana, Chan Jefferson, Nam Christine I, Aron Allegra T, Onak Carl S, Ramos-Torres Karla M, Paek Jaeho, Webster Corey M, Feller Marla B, Chang Christopher J
Departments of Chemistry and.
Vision Sciences Graduate Program, Department of Optometry.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16280-5. doi: 10.1073/pnas.1409796111. Epub 2014 Nov 5.
For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.
由于尚未完全理解的原因,大脑正常功能需要体内最高水平的金属。对于这个器官和其他器官的传统范式是,碱金属和碱土金属的通量是信号传导所必需的,但过渡金属则维持在静态、紧密结合的储存库中用于新陈代谢和抵御氧化应激。在这里,我们表明铜是自发活动的内源性调节剂,这是功能性神经回路的一种特性。使用铜荧光-3(CF3),一种用于单光子和双光子成像的新型荧光Cu(+)传感器,我们表明神经元和神经组织维持着可被螯合减弱的松散结合铜的基础储备,这定义了一个不稳定铜池。通过急性螯合或CTR1(铜转运蛋白1)铜通道的基因敲低对这些不稳定铜储备进行靶向破坏,会改变发育中的海马体和视网膜回路中自发活动的时空特性。这些数据确定了铜在神经元功能中的重要作用,并表明这种过渡金属对细胞信号传导有更广泛的贡献。