Suppr超能文献

在病损研究中,哪些因素会影响病损-缺陷关系的可检测性?

What affects detectability of lesion-deficit relationships in lesion studies?

作者信息

Inoue Kayo, Madhyastha Tara, Rudrauf David, Mehta Sonya, Grabowski Thomas

机构信息

Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA ; Integrated Brain Imaging Center, University of Washington Medical Center, Seattle, WA, USA.

Grenoble Institut des Neurosciences Inserm U 836 - UJF - CEA - CHU, Grenoble, France.

出版信息

Neuroimage Clin. 2014 Oct 16;6:388-97. doi: 10.1016/j.nicl.2014.10.002. eCollection 2014.

Abstract

Elucidating the brain basis for psychological processes and behavior is a fundamental aim of cognitive neuroscience. The lesion method, using voxel-based statistical analysis, is an important approach to this goal, identifying neural structures that are necessary for the support of specific mental operations, and complementing the strengths of functional imaging techniques. Lesion coverage in a population is by nature spatially heterogeneous and biased, systematically affecting the ability of lesion-deficit correlation methods to detect and localize functional associations. We have developed a simulator that allows investigators to model parameters in a lesion-deficit study and characterize the statistical bias in lesion deficit detection coverage that will result from specific assumptions. We used the simulator to assess the signal detection properties and localization accuracy of standard lesion-deficit correlation methods, under a simple truth model - that a critical region of interest (CR), when damaged, gives rise to a deficit. We considered voxel-based lesion-symptom mapping (VLSM) and proportional MAP-3 (PM3). Using regression analysis, we examined if the pattern of outcome statistics can be explained by simulation parameters, factors that are inherent to anatomic parcels, and lesion coverage of the population, which consisted of a representative sample of 351 subjects drawn from the Iowa Patient Registry. We examined the effect of using nonparametric versus parametric statistics to obtain thresholded maps and the effect of correcting for multiple comparisons using false discovery rate or cluster-based correction. Our results, which are derived from samples of realistic lesions, indicate that even a simple truth model yields localization errors that are systematic and pervasive, averaging 2 cm in the standard anatomic space, and tending to be directed towards areas of greater anatomic coverage. This displacement positions the center of mass of the detected region in a different anatomical region 87% of the time. This basic result is not affected by the choice of PM3 vs VLSM as the fundamental approach, nor is localization error ameliorated by incorporation of lesion size as a covariate in the VLSM approach, or by data distribution-driven approaches to controlling multiple spatial comparisons (false discovery rate or cluster-based correction approaches). Our simulations offer a quantitative basis for interpreting lesion studies in cognitive neuroscience. We suggest ways in which lesion simulation and analysis frameworks could be productively extended.

摘要

阐明心理过程和行为的脑基础是认知神经科学的一个基本目标。采用基于体素的统计分析的损伤方法是实现这一目标的重要途径,它能识别支持特定心理操作所需的神经结构,并补充功能成像技术的优势。人群中的损伤覆盖在本质上是空间异质性和有偏差的,系统地影响损伤-缺陷相关方法检测和定位功能关联的能力。我们开发了一种模拟器,使研究人员能够在损伤-缺陷研究中对参数进行建模,并描述由特定假设导致的损伤缺陷检测覆盖中的统计偏差。我们使用该模拟器在一个简单的真值模型下评估标准损伤-缺陷相关方法的信号检测特性和定位准确性,即一个关键感兴趣区域(CR)受损时会导致缺陷。我们考虑了基于体素的损伤-症状映射(VLSM)和比例MAP-3(PM3)。通过回归分析,我们研究了结果统计模式是否可以由模拟参数、解剖区域固有的因素以及人群的损伤覆盖来解释,该人群由从爱荷华患者登记处抽取的351名受试者的代表性样本组成。我们研究了使用非参数统计与参数统计来获得阈值化图谱的效果,以及使用错误发现率或基于簇的校正来校正多重比较的效果。我们从现实损伤样本得出的结果表明,即使是一个简单的真值模型也会产生系统性和普遍性的定位误差,在标准解剖空间中平均为2厘米,并且倾向于指向解剖覆盖范围更大的区域。这种位移在87%的时间里将检测到的区域的质心定位在不同的解剖区域。这个基本结果不受作为基本方法的PM3与VLSM选择的影响,也不会因在VLSM方法中纳入损伤大小作为协变量,或通过数据分布驱动的方法来控制多重空间比较(错误发现率或基于簇的校正方法)而改善定位误差。我们的模拟为解释认知神经科学中的损伤研究提供了定量基础。我们提出了可以有效扩展损伤模拟和分析框架的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/247b/4218935/d98bd8d031fc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验