Belkin Maxim, Chao Shu-Han, Giannetti Gino, Aksimentiev Aleksei
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801.
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801.
J Comput Electron. 2014 Dec 1;13(4):826-838. doi: 10.1007/s10825-014-0594-8.
Local modulation of temperature has emerged as a new mechanism for regulation of molecular transport through nanopores. Predicting the effect of such modulations on nanopore transport requires simulation protocols capable of reproducing non-uniform temperature gradients observed in experiment. Conventional molecular dynamics (MD) method typically employs a single thermostat for maintaining a uniform distribution of temperature in the entire simulation domain, and, therefore, can not model local temperature variations. In this article, we describe a set of simulation protocols that enable modeling of nanopore systems featuring non-uniform distributions of temperature. First, we describe a method to impose a temperature gradient in all-atom MD simulations based on a boundary-driven non-equilibrium MD protocol. Then, we use this method to study the effect of temperature gradient on the distribution of ions in bulk solution (the thermophoretic effect). We show that DNA nucleotides exhibit differential response to the same temperature gradient. Next, we describe a method to directly compute the effective force of a thermal gradient on a prototypical biomolecule-a fragment of double-stranded DNA. Following that, we demonstrate an all-atom MD protocol for modeling thermophoretic effects in solid-state nanopores. We show that local heating of a nanopore volume can be used to regulate the nanopore ionic current. Finally, we show how continuum calculations can be coupled to a coarse-grained model of DNA to study the effect of local temperature modulation on electrophoretic motion of DNA through plasmonic nanopores. The computational methods described in this article are expected to find applications in rational design of temperature-responsive nanopore systems.
温度的局部调制已成为调节分子通过纳米孔传输的一种新机制。预测这种调制对纳米孔传输的影响需要能够重现实验中观察到的非均匀温度梯度的模拟协议。传统的分子动力学(MD)方法通常采用单个恒温器来维持整个模拟域内温度的均匀分布,因此无法模拟局部温度变化。在本文中,我们描述了一组模拟协议,能够对具有非均匀温度分布的纳米孔系统进行建模。首先,我们描述了一种基于边界驱动的非平衡MD协议在全原子MD模拟中施加温度梯度的方法。然后,我们使用该方法研究温度梯度对本体溶液中离子分布的影响(热泳效应)。我们表明,DNA核苷酸对相同的温度梯度表现出不同的响应。接下来,我们描述了一种直接计算热梯度对典型生物分子——双链DNA片段的有效力的方法。随后,我们展示了一种用于模拟固态纳米孔中热泳效应的全原子MD协议。我们表明,纳米孔体积的局部加热可用于调节纳米孔离子电流。最后,我们展示了如何将连续介质计算与DNA的粗粒度模型相结合,以研究局部温度调制对DNA通过等离子体纳米孔的电泳运动的影响。本文中描述的计算方法有望在温度响应纳米孔系统的合理设计中找到应用。