Suppr超能文献

固态纳米孔中热泳效应的建模

Modeling thermophoretic effects in solid-state nanopores.

作者信息

Belkin Maxim, Chao Shu-Han, Giannetti Gino, Aksimentiev Aleksei

机构信息

Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801.

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801.

出版信息

J Comput Electron. 2014 Dec 1;13(4):826-838. doi: 10.1007/s10825-014-0594-8.

Abstract

Local modulation of temperature has emerged as a new mechanism for regulation of molecular transport through nanopores. Predicting the effect of such modulations on nanopore transport requires simulation protocols capable of reproducing non-uniform temperature gradients observed in experiment. Conventional molecular dynamics (MD) method typically employs a single thermostat for maintaining a uniform distribution of temperature in the entire simulation domain, and, therefore, can not model local temperature variations. In this article, we describe a set of simulation protocols that enable modeling of nanopore systems featuring non-uniform distributions of temperature. First, we describe a method to impose a temperature gradient in all-atom MD simulations based on a boundary-driven non-equilibrium MD protocol. Then, we use this method to study the effect of temperature gradient on the distribution of ions in bulk solution (the thermophoretic effect). We show that DNA nucleotides exhibit differential response to the same temperature gradient. Next, we describe a method to directly compute the effective force of a thermal gradient on a prototypical biomolecule-a fragment of double-stranded DNA. Following that, we demonstrate an all-atom MD protocol for modeling thermophoretic effects in solid-state nanopores. We show that local heating of a nanopore volume can be used to regulate the nanopore ionic current. Finally, we show how continuum calculations can be coupled to a coarse-grained model of DNA to study the effect of local temperature modulation on electrophoretic motion of DNA through plasmonic nanopores. The computational methods described in this article are expected to find applications in rational design of temperature-responsive nanopore systems.

摘要

温度的局部调制已成为调节分子通过纳米孔传输的一种新机制。预测这种调制对纳米孔传输的影响需要能够重现实验中观察到的非均匀温度梯度的模拟协议。传统的分子动力学(MD)方法通常采用单个恒温器来维持整个模拟域内温度的均匀分布,因此无法模拟局部温度变化。在本文中,我们描述了一组模拟协议,能够对具有非均匀温度分布的纳米孔系统进行建模。首先,我们描述了一种基于边界驱动的非平衡MD协议在全原子MD模拟中施加温度梯度的方法。然后,我们使用该方法研究温度梯度对本体溶液中离子分布的影响(热泳效应)。我们表明,DNA核苷酸对相同的温度梯度表现出不同的响应。接下来,我们描述了一种直接计算热梯度对典型生物分子——双链DNA片段的有效力的方法。随后,我们展示了一种用于模拟固态纳米孔中热泳效应的全原子MD协议。我们表明,纳米孔体积的局部加热可用于调节纳米孔离子电流。最后,我们展示了如何将连续介质计算与DNA的粗粒度模型相结合,以研究局部温度调制对DNA通过等离子体纳米孔的电泳运动的影响。本文中描述的计算方法有望在温度响应纳米孔系统的合理设计中找到应用。

相似文献

1
Modeling thermophoretic effects in solid-state nanopores.
J Comput Electron. 2014 Dec 1;13(4):826-838. doi: 10.1007/s10825-014-0594-8.
2
Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
ACS Nano. 2013 Aug 27;7(8):6816-24. doi: 10.1021/nn403575n. Epub 2013 Jul 26.
3
Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.
ACS Appl Mater Interfaces. 2016 May 25;8(20):12599-608. doi: 10.1021/acsami.6b00463. Epub 2016 Mar 21.
4
Multi-resolution simulation of DNA transport through large synthetic nanostructures.
Phys Chem Chem Phys. 2022 Feb 2;24(5):2706-2716. doi: 10.1039/d1cp04589j.
6
8
Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores.
Nanotechnology. 2019 Apr 19;30(16):165701. doi: 10.1088/1361-6528/aafdd7. Epub 2019 Jan 11.
9
Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
Nanotechnology. 2014 Jul 11;25(27):275501. doi: 10.1088/0957-4484/25/27/275501. Epub 2014 Jun 24.
10
Thermodiffusion of ions in nanoconfined aqueous electrolytes.
J Colloid Interface Sci. 2022 Aug;619:331-338. doi: 10.1016/j.jcis.2022.03.077. Epub 2022 Mar 21.

引用本文的文献

1
Optical Manipulation Heats up: Present and Future of Optothermal Manipulation.
ACS Nano. 2023 Apr 25;17(8):7051-7063. doi: 10.1021/acsnano.3c00536. Epub 2023 Apr 6.
2
Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects.
Anal Chem. 2022 Jan 18;94(2):503-514. doi: 10.1021/acs.analchem.1c04459. Epub 2022 Jan 1.
3
Scalable molecular dynamics on CPU and GPU architectures with NAMD.
J Chem Phys. 2020 Jul 28;153(4):044130. doi: 10.1063/5.0014475.
4
Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.
ACS Appl Mater Interfaces. 2016 May 25;8(20):12599-608. doi: 10.1021/acsami.6b00463. Epub 2016 Mar 21.
5
Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA.
ACS Nano. 2015 Nov 24;9(11):10598-611. doi: 10.1021/acsnano.5b04173. Epub 2015 Oct 1.

本文引用的文献

1
A Coarse-Grained Model of Unstructured Single-Stranded DNA Derived from Atomistic Simulation and Single-Molecule Experiment.
J Chem Theory Comput. 2014 Aug 12;10(8):2891-2896. doi: 10.1021/ct500193u. Epub 2014 Jun 3.
3
Filtering of nanoparticles with tunable semiconductor membranes.
ACS Nano. 2013 Aug 27;7(8):7053-61. doi: 10.1021/nn4023697. Epub 2013 Jul 30.
4
Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
ACS Nano. 2013 Aug 27;7(8):6816-24. doi: 10.1021/nn403575n. Epub 2013 Jul 26.
6
Alkali halide solutions under thermal gradients: soret coefficients and heat transfer mechanisms.
J Phys Chem B. 2013 Jul 11;117(27):8209-22. doi: 10.1021/jp403862x. Epub 2013 Jun 26.
7
Plasmonic nanopore for electrical profiling of optical intensity landscapes.
Nano Lett. 2013 Mar 13;13(3):1029-33. doi: 10.1021/nl304213s. Epub 2013 Feb 15.
8
Temperature sculpting in yoctoliter volumes.
J Am Chem Soc. 2013 Feb 27;135(8):3087-94. doi: 10.1021/ja309892e. Epub 2013 Feb 14.
9
Thermophoretic manipulation of DNA translocation through nanopores.
ACS Nano. 2013 Jan 22;7(1):538-46. doi: 10.1021/nn304914j. Epub 2012 Dec 10.
10
Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes.
Nanotechnology. 2012 Jun 8;23(22):225502. doi: 10.1088/0957-4484/23/22/225502. Epub 2012 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验