Suppr超能文献

POWERLIB:用于计算多元线性模型功效的SAS/IML软件。

POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models.

作者信息

Johnson Jacqueline L, Muller Keith E, Slaughter James C, Gurka Matthew J, Gribbin Matthew J, Simpson Sean L

机构信息

University of North Carolina at Chapel Hill.

University of Florida.

出版信息

J Stat Softw. 2009 Apr 1;30(5). doi: 10.18637/jss.v030.i05.

Abstract

The SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the "univariate" approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in "multivariate" approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts.

摘要

SAS/IML软件为广泛的具有高斯误差的多元线性模型提供了便捷的功效计算。该软件在重复测量的“单变量”方法(UNIREP)中包括Box检验、Geisser-Greenhouse检验、Huynh-Feldt检验和未校正检验,在“多变量”方法(MULTIREP)中包括Hotelling Lawley迹检验、Pillai-Bartlett迹检验和Wilks Lambda检验,以及一系列有限但有用的混合模型。具有高斯误差的常见单变量线性模型是一个重要的特殊情况。对于估计的协方差,该软件为所得的估计功效提供置信限。所有功效和置信限值都可以输出到一个SAS数据集,该数据集可用于轻松地为稿件生成图表和表格。

相似文献

1
POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models.
J Stat Softw. 2009 Apr 1;30(5). doi: 10.18637/jss.v030.i05.
2
Statistical tests with accurate size and power for balanced linear mixed models.
Stat Med. 2007 Aug 30;26(19):3639-60. doi: 10.1002/sim.2827.
3
Tests for gaussian repeated measures with missing data in small samples.
Stat Med. 2000 Apr 30;19(8):1101-14. doi: 10.1002/(sici)1097-0258(20000430)19:8<1101::aid-sim415>3.0.co;2-h.
4
Adjusting power for a baseline covariate in linear models.
Stat Med. 2003 Aug 30;22(16):2535-51. doi: 10.1002/sim.1341.
6
GLUMIP 2.0: Software for Planning Internal Pilots.
J Stat Softw. 2008 Nov;28(7). doi: 10.18637/jss.v028.i07. Epub 2008 Nov 13.
7
Power and Sample Size for Fixed-Effects Inference in Reversible Linear Mixed Models.
Am Stat. 2019;73(4):350-359. doi: 10.1080/00031305.2017.1415972. Epub 2018 Jun 4.
8
Multivariate test power approximations for balanced linear mixed models in studies with missing data.
Stat Med. 2016 Jul 30;35(17):2921-37. doi: 10.1002/sim.6811. Epub 2015 Nov 24.
9
A SAS/IML program using the Kalman filter for estimating state space models.
Behav Res Methods. 2013 Mar;45(1):38-53. doi: 10.3758/s13428-012-0227-8.
10
Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.
Eur J Hum Genet. 2017 Feb;25(3):350-359. doi: 10.1038/ejhg.2016.170. Epub 2016 Dec 21.

引用本文的文献

1
Power and sample size for reversible linear mixed models with clustering and longitudinality: GLIMMPSE Version 3.
PLoS One. 2025 Sep 3;20(9):e0329712. doi: 10.1371/journal.pone.0329712. eCollection 2025.
3
Holo-omics analysis reveals the influence of gut microbiota on obesity indicators in Jinhua pigs.
BMC Microbiol. 2023 Nov 3;23(1):322. doi: 10.1186/s12866-023-03011-8.
4
Power for balanced linear mixed models with complex missing data processes.
Commun Stat Theory Methods. 2023;52(1):46-64. doi: 10.1080/03610926.2021.1909732. Epub 2021 Apr 5.
8
Power and Sample Size for Fixed-Effects Inference in Reversible Linear Mixed Models.
Am Stat. 2019;73(4):350-359. doi: 10.1080/00031305.2017.1415972. Epub 2018 Jun 4.
10
GLUMIP 2.0: Software for Planning Internal Pilots.
J Stat Softw. 2008 Nov;28(7). doi: 10.18637/jss.v028.i07. Epub 2008 Nov 13.

本文引用的文献

1
Power Calculations for General Linear Multivariate Models Including Repeated Measures Applications.
J Am Stat Assoc. 1992 Dec 1;87(420):1209-1226. doi: 10.1080/01621459.1992.10476281.
2
BIAS IN LINEAR MODEL POWER AND SAMPLE SIZE DUE TO ESTIMATING VARIANCE.
Commun Stat Theory Methods. 1997;26(4). doi: 10.1080/03610929708831953.
3
BIAS IN LINEAR MODEL POWER AND SAMPLE SIZE CALCULATION DUE TO ESTIMATING NONCENTRALITY.
Commun Stat Theory Methods. 1996;25(7). doi: 10.1080/03610929608831787.
4
Computing Confidence Bounds for Power and Sample Size of the General Linear Univariate Model.
Am Stat. 1995 Jan 1;49(1):43-47. doi: 10.1080/00031305.1995.10476111.
5
A New Approximation for the Pillai-Bartlett Trace under .
J Comput Graph Stat. 1998 Mar;7(1):131-137.
6
Statistical tests with accurate size and power for balanced linear mixed models.
Stat Med. 2007 Aug 30;26(19):3639-60. doi: 10.1002/sim.2827.
8
Properties of internal pilots with the univariate approach to repeated measures.
Stat Med. 2003 Aug 15;22(15):2469-85. doi: 10.1002/sim.1466.
9
Increasing scientific power with statistical power.
Neurotoxicol Teratol. 1992 May-Jun;14(3):211-9. doi: 10.1016/0892-0362(92)90019-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验