Diu Ting, Faruqui Nilofar, Sjöström Terje, Lamarre Baptiste, Jenkinson Howard F, Su Bo, Ryadnov Maxim G
1] National Physical Laboratory, Hampton Road, Teddington. TW11 0LW, UK [2] School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, UK.
National Physical Laboratory, Hampton Road, Teddington. TW11 0LW, UK.
Sci Rep. 2014 Nov 20;4:7122. doi: 10.1038/srep07122.
Biocompatible surfaces hold key to a variety of biomedical problems that are directly related to the competition between host-tissue cell integration and bacterial colonisation. A saving solution to this is seen in the ability of cells to uniquely respond to physical cues on such surfaces thus prompting the search for cell-instructive nanoscale patterns. Here we introduce a generic rationale engineered into biocompatible, titanium, substrates to differentiate cell responses. The rationale is inspired by cicada wing surfaces that display bactericidal nanopillar patterns. The surfaces engineered in this study are titania (TiO2) nanowire arrays that are selectively bactericidal against motile bacteria, while capable of guiding mammalian cell proliferation according to the type of the array. The concept holds promise for clinically relevant materials capable of differential physico-mechanical responses to cellular adhesion.
生物相容性表面是解决各种生物医学问题的关键,这些问题直接关系到宿主组织细胞整合与细菌定植之间的竞争。解决这一问题的一个有效方法是细胞能够对这类表面上的物理线索做出独特反应,从而促使人们寻找具有细胞指导作用的纳米级图案。在此,我们介绍一种设计在生物相容性钛基底中的通用原理,以区分细胞反应。该原理的灵感来自于具有杀菌纳米柱图案的蝉翼表面。本研究中设计的表面是二氧化钛(TiO₂)纳米线阵列,它对运动性细菌具有选择性杀菌作用,同时能够根据阵列类型引导哺乳动物细胞增殖。这一概念为能够对细胞黏附产生不同物理机械反应的临床相关材料带来了希望。