Suppr超能文献

嵌入壳聚糖纳米颗粒的荧光碲化镉量子点:一种用于生物成像的稳定、生物相容性制剂。

Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging.

作者信息

Ghormade Vandana, Gholap Haribhau, Kale Sonia, Kulkarni Vaishnavi, Bhat Suresh, Paknikar Kishore

机构信息

a Centre for Nanobioscience , Agharkar Research Institute , GG Agarkar Road, Pune 411004 , India.

出版信息

J Biomater Sci Polym Ed. 2015;26(1):42-56. doi: 10.1080/09205063.2014.982240. Epub 2014 Nov 20.

Abstract

Fluorescent cadmium telluride quantum dots (CdTe QDs) are an optically attractive option for bioimaging, but are known to display high cytotoxicity. Nanoparticles synthesized from chitosan, a natural biopolymer of β 1-4 linked glucosamine, display good biocompatibility and cellular uptake. A facile, green synthetic strategy has been developed to embed green fluorescent cadmium telluride quantum dots (CdTe QDs) in biocompatible CNPs to obtain a safer preparation than 'as is' QDs. High-resolution transmission electron microscopy showed the crystal lattice corresponding to CdTe QDs embedded in CNPs while thermogravimetry confirmed their polymeric composition. Electrostatic interactions between thiol-capped QDs (4 nm, -57 mV) and CNPs (~300 nm, +38 mV) generated CdTe QDs-embedded CNPs that were stable up to three months. Further, viability of NIH3T3 mouse fibroblast cells in vitro increased in presence of QDs-embedded CNPs as compared to bare QDs. At the highest concentration (10 μg/ml), the former shows 34 and 39% increase in viability at 24 and 48 h, respectively, as compared to the latter. This shows that chitosan nanoparticles do not release the QDs up to 48 h and do not cause extended toxicity. Furthermore, hydrolytic enzymes such as lysozyme and chitinase did not degrade chitosan nanoparticles. Moreover, QDs-embedded CNPs show enhanced internalization in NIH3T3 cells as compared to bare QDs. This method offers ease of synthesis and handling of stable, luminescent, biocompatible CdTe QDs-embedded CNPs with a favorable toxicity profile and better cellular uptake with potential for bioimaging and targeted detection of cellular components.

摘要

荧光碲化镉量子点(CdTe QDs)是生物成像领域一种具有光学吸引力的选择,但已知其具有高细胞毒性。由壳聚糖(一种β 1-4连接的葡糖胺天然生物聚合物)合成的纳米颗粒具有良好的生物相容性和细胞摄取能力。人们已经开发出一种简便、绿色的合成策略,将绿色荧光碲化镉量子点(CdTe QDs)嵌入生物相容性的壳聚糖纳米颗粒(CNPs)中,以获得比“原样”量子点更安全的制剂。高分辨率透射电子显微镜显示了与嵌入CNPs中的CdTe QDs相对应的晶格,而热重分析证实了它们的聚合物组成。巯基封端的量子点(4纳米,-57毫伏)与CNPs(约300纳米,+38毫伏)之间的静电相互作用产生了嵌入CdTe QDs的CNPs,其稳定性可达三个月。此外,与裸露的量子点相比,在嵌入量子点的CNPs存在下,NIH3T3小鼠成纤维细胞的体外活力有所增加。在最高浓度(10微克/毫升)下,与后者相比,前者在24小时和48小时时的活力分别提高了34%和39%。这表明壳聚糖纳米颗粒在48小时内不会释放量子点,也不会导致长期毒性。此外,溶菌酶和几丁质酶等水解酶不会降解壳聚糖纳米颗粒。此外,与裸露的量子点相比,嵌入量子点的CNPs在NIH3T3细胞中的内化作用增强。这种方法具有合成简便、易于处理稳定的发光生物相容性嵌入CdTe QDs的CNPs的优点,具有良好的毒性特征和更好的细胞摄取能力,具有生物成像和细胞成分靶向检测的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验