Cai Duanjun, Lin Na, Xu Hongmei, Liao Che-Hao, Yang C C
Fujian Key Laboratory of Semiconductor Materials and Applications, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
Nanotechnology. 2014 Dec 12;25(49):495705. doi: 10.1088/0957-4484/25/49/495705. Epub 2014 Nov 21.
We report the extraordinary tunneling process that finds the lower cohesive energy route for stablizing InN shell layer on m-plane sidewall of GaN nanorod. The [0001] orientated GaN nanorod array is grown on sapphire substrate patterned with Ga nanoparticle by metal-organic vapor deposition method, based on which the simulation structures of c-plane top surface and m-plane sidewall surface is constructed for the first-principles calculations. The results show that the introduction of In wetting monolayer could effectively lower the cohesive energy of adalayers on non-polar GaN surfaces. Most importantly, it is revealed that there exists an extraordinary tunneling process in which the N atoms will drag out the In wetting atoms and tunnel through to form stable InN shell layer on the nanorod sidewall.
我们报道了一种非凡的隧穿过程,该过程找到了在氮化镓纳米棒的m面侧壁上稳定氮化铟壳层的较低内聚能路径。通过金属有机气相沉积法在图案化有镓纳米颗粒的蓝宝石衬底上生长[0001]取向的氮化镓纳米棒阵列,在此基础上构建了c面顶面和m面侧壁表面的模拟结构用于第一性原理计算。结果表明,引入铟润湿单层可以有效降低非极性氮化镓表面上吸附层的内聚能。最重要的是,揭示了存在一种非凡的隧穿过程,其中氮原子会拖出铟润湿原子并隧穿形成纳米棒侧壁上稳定的氮化铟壳层。