Suppr超能文献

人类和小鼠组织之间转录图谱的比较。

Comparison of the transcriptional landscapes between human and mouse tissues.

作者信息

Lin Shin, Lin Yiing, Nery Joseph R, Urich Mark A, Breschi Alessandra, Davis Carrie A, Dobin Alexander, Zaleski Christopher, Beer Michael A, Chapman William C, Gingeras Thomas R, Ecker Joseph R, Snyder Michael P

机构信息

Department of Genetics, Stanford University, Stanford, CA 94305; Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305;

Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110;

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17224-9. doi: 10.1073/pnas.1413624111. Epub 2014 Nov 20.

Abstract

Although the similarities between humans and mice are typically highlighted, morphologically and genetically, there are many differences. To better understand these two species on a molecular level, we performed a comparison of the expression profiles of 15 tissues by deep RNA sequencing and examined the similarities and differences in the transcriptome for both protein-coding and -noncoding transcripts. Although commonalities are evident in the expression of tissue-specific genes between the two species, the expression for many sets of genes was found to be more similar in different tissues within the same species than between species. These findings were further corroborated by associated epigenetic histone mark analyses. We also find that many noncoding transcripts are expressed at a low level and are not detectable at appreciable levels across individuals. Moreover, the majority lack obvious sequence homologs between species, even when we restrict our attention to those which are most highly reproducible across biological replicates. Overall, our results indicate that there is considerable RNA expression diversity between humans and mice, well beyond what was described previously, likely reflecting the fundamental physiological differences between these two organisms.

摘要

尽管人类和小鼠之间的相似性通常会被重点提及,但在形态和基因方面,仍存在许多差异。为了在分子水平上更好地理解这两个物种,我们通过深度RNA测序对15种组织的表达谱进行了比较,并研究了蛋白质编码和非编码转录本在转录组中的异同。虽然两个物种在组织特异性基因的表达上存在明显的共性,但研究发现,同一物种内不同组织中许多基因集的表达比不同物种之间更为相似。相关的表观遗传组蛋白标记分析进一步证实了这些发现。我们还发现,许多非编码转录本的表达水平较低,在个体间无法检测到明显的表达量。此外,即使我们将注意力限制在生物学重复中最具重复性的那些转录本上,大多数转录本在物种间也缺乏明显的序列同源性。总体而言,我们的结果表明,人类和小鼠之间存在相当大的RNA表达多样性,远远超过先前的描述,这可能反映了这两种生物之间的基本生理差异。

相似文献

1
Comparison of the transcriptional landscapes between human and mouse tissues.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17224-9. doi: 10.1073/pnas.1413624111. Epub 2014 Nov 20.
2
Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts.
PLoS Biol. 2021 May 18;19(5):e3001229. doi: 10.1371/journal.pbio.3001229. eCollection 2021 May.
3
Genome-wide epigenetic landscape of pig lincRNAs and their evolution during porcine domestication.
Epigenomics. 2018 Dec;10(12):1603-1618. doi: 10.2217/epi-2017-0117. Epub 2018 Oct 29.
4
Gene-specific patterns of expression variation across organs and species.
Genome Biol. 2016 Jul 8;17(1):151. doi: 10.1186/s13059-016-1008-y.
5
Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-Seq.
PLoS Comput Biol. 2010 Jul 1;6(7):e1000843. doi: 10.1371/journal.pcbi.1000843.
6
A Comprehensive Mouse Transcriptomic BodyMap across 17 Tissues by RNA-seq.
Sci Rep. 2017 Jun 23;7(1):4200. doi: 10.1038/s41598-017-04520-z.
7
Comprehensive characterization of 10,571 mouse large intergenic noncoding RNAs from whole transcriptome sequencing.
PLoS One. 2013 Aug 12;8(8):e70835. doi: 10.1371/journal.pone.0070835. eCollection 2013.
8
Sequencing cell-type-specific transcriptomes with SLAM-ITseq.
Nat Protoc. 2019 Aug;14(8):2261-2278. doi: 10.1038/s41596-019-0179-x. Epub 2019 Jun 26.
10
Unveiling Tissue-Specific RNA Landscapes in Mouse Organs During Fasting and Feeding Using Nanopore Direct RNA Sequencing.
Adv Sci (Weinh). 2025 Feb;12(5):e2408054. doi: 10.1002/advs.202408054. Epub 2024 Dec 16.

引用本文的文献

2
Navigating the Strengths and Constraints of Mouse Models in Obesity Research.
Endocrinology. 2025 Jul 8;166(9). doi: 10.1210/endocr/bqaf123.
3
Dissection of Neurochemical Pathways Across Complexity and Scale.
J Neurochem. 2025 Jul;169(7):e70160. doi: 10.1111/jnc.70160.
4
Plin2 Coordinates Immune and Metabolic Reprogramming in Lacrimal Gland Aging.
Invest Ophthalmol Vis Sci. 2025 Jun 2;66(6):79. doi: 10.1167/iovs.66.6.79.
5
Demyelination and Remyelination: General Principles.
Adv Neurobiol. 2025;43:207-255. doi: 10.1007/978-3-031-87919-7_9.
7
Aldehyde metabolism governs resilience of mucociliary clearance to air pollution exposure.
J Clin Invest. 2025 May 15;135(14). doi: 10.1172/JCI191276. eCollection 2025 Jul 15.
9
Dysregulated ac4C modification of mRNA in a mouse model of early-stage Alzheimer's disease.
Cell Biosci. 2025 Apr 13;15(1):45. doi: 10.1186/s13578-025-01389-8.
10
Bile-Liver phenotype: Exploring the microbiota landscape in bile and intratumor of cholangiocarcinoma.
Comput Struct Biotechnol J. 2025 Mar 18;27:1173-1186. doi: 10.1016/j.csbj.2025.03.030. eCollection 2025.

本文引用的文献

1
Principles of regulatory information conservation between mouse and human.
Nature. 2014 Nov 20;515(7527):371-375. doi: 10.1038/nature13985.
2
Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals.
Genome Res. 2014 Apr;24(4):616-28. doi: 10.1101/gr.165035.113. Epub 2014 Jan 15.
3
The Genotype-Tissue Expression (GTEx) project.
Nat Genet. 2013 Jun;45(6):580-5. doi: 10.1038/ng.2653.
4
Genomic responses in mouse models poorly mimic human inflammatory diseases.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12. doi: 10.1073/pnas.1222878110. Epub 2013 Feb 11.
5
CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model.
Nucleic Acids Res. 2013 Apr 1;41(6):e74. doi: 10.1093/nar/gkt006. Epub 2013 Jan 17.
6
Genome-wide chromatin state transitions associated with developmental and environmental cues.
Cell. 2013 Jan 31;152(3):642-54. doi: 10.1016/j.cell.2012.12.033. Epub 2013 Jan 17.
7
Evolutionary dynamics of gene and isoform regulation in Mammalian tissues.
Science. 2012 Dec 21;338(6114):1593-9. doi: 10.1126/science.1228186.
8
The evolutionary landscape of alternative splicing in vertebrate species.
Science. 2012 Dec 21;338(6114):1587-93. doi: 10.1126/science.1230612.
9
Evolution. Splicing in 4D.
Science. 2012 Dec 21;338(6114):1547-8. doi: 10.1126/science.1233219.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验