Suppr超能文献

两种鳗弧菌噬菌体的全基因组序列分析,潜在治疗剂

Complete genome sequence analysis of two Pseudomonas plecoglossicida phages, potential therapeutic agents.

作者信息

Kawato Yasuhiko, Yasuike Motoshige, Nakamura Yoji, Shigenobu Yuya, Fujiwara Atushi, Sano Motohiko, Nakai Toshihiro

机构信息

Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan

Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan.

出版信息

Appl Environ Microbiol. 2015 Feb;81(3):874-81. doi: 10.1128/AEM.03038-14. Epub 2014 Nov 21.

Abstract

Pseudomonas plecoglossicida is a lethal pathogen of ayu (Plecoglossus altivelis) in Japan and is responsible for substantial economic costs to ayu culture. Previously, we demonstrated the efficacy of phage therapy against P. plecoglossicida infection using two lytic phages (PPpW-3 and PPpW-4) (S. C. Park, I. Shimamura, M. Fukunaga, K. Mori, and T. Nakai, Appl Environ Microbiol 66:1416-1422, 2000, http://dx.doi.org/10.1128/AEM.66.4.1416-1422.2000; S. C. Park and T. Nakai, Dis Aquat Org 53:33-39, 2003, http://dx.doi.org/10.3354/dao053033). In the present study, the complete genome sequences of these therapeutic P. plecoglossicida phages were determined and analyzed for deleterious factors as therapeutic agents. The genome of PPpW-3 (myovirus) consisted of 43,564 bp with a GC content of 61.1% and 66 predicted open reading frames (ORFs). Approximately half of the genes were similar to the genes of the Escherichia coli phage vB_EcoM_ECO1230-10 (myovirus). The genome of PPpW-4 (podovirus) consisted of 41,386 bp with a GC content of 56.8% and 50 predicted ORFs. More than 70% of the genes were similar to the genes of Pseudomonas fluorescens phage ϕIBB-PF7A and Pseudomonas putida phage ϕ15 (podoviruses). The whole-genome analysis revealed that no known virulence genes were present in PPpW-3 and PPpW-4. An integrase gene was found in PPpW-3, but other factors used for lysogeny were not confirmed. The PCR detection of phage genes in phage-resistant variants provided no evidence of lysogenic activity in PPpW-3 and PPpW-4. We conclude that these two lytic phages qualify as therapeutic agents.

摘要

嗜水气单胞菌假单胞菌是日本香鱼(Plecoglossus altivelis)的一种致命病原体,给香鱼养殖带来了巨大的经济损失。此前,我们利用两种裂解性噬菌体(PPpW - 3和PPpW - 4)证明了噬菌体疗法对嗜水气单胞菌假单胞菌感染的有效性(S.C. Park、I. Shimamura、M. Fukunaga、K. Mori和T. Nakai,《应用与环境微生物学》66:1416 - 1422,2000年,http://dx.doi.org/10.1128/AEM.66.4.1416 - 1422.2000;S.C. Park和T. Nakai,《水生生物疾病》53:33 - 39,2003年,http://dx.doi.org/10.3354/dao053033)。在本研究中,测定了这些治疗性嗜水气单胞菌假单胞菌噬菌体的完整基因组序列,并分析了其作为治疗剂的有害因素。PPpW - 3(肌尾噬菌体)的基因组由43,564个碱基对组成,GC含量为61.1%,有66个预测的开放阅读框(ORF)。大约一半的基因与大肠杆菌噬菌体vB_EcoM_ECO1230 - 10(肌尾噬菌体)的基因相似。PPpW - 4(短尾噬菌体)的基因组由41,386个碱基对组成,GC含量为56.8%,有50个预测的ORF。超过70%的基因与荧光假单胞菌噬菌体ϕIBB - PF7A和恶臭假单胞菌噬菌体ϕ15(短尾噬菌体)的基因相似。全基因组分析表明,PPpW - 3和PPpW - 4中不存在已知的毒力基因。在PPpW - 3中发现了一个整合酶基因,但未证实其他用于溶原性的因素。对噬菌体抗性变体中噬菌体基因的PCR检测没有提供PPpW - 3和PPpW - 4溶原性活性的证据。我们得出结论,这两种裂解性噬菌体符合治疗剂的标准。

相似文献

1
Complete genome sequence analysis of two Pseudomonas plecoglossicida phages, potential therapeutic agents.
Appl Environ Microbiol. 2015 Feb;81(3):874-81. doi: 10.1128/AEM.03038-14. Epub 2014 Nov 21.
2
Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis.
Dis Aquat Organ. 2003 Jan 22;53(1):33-9. doi: 10.3354/dao053033.
3
Genome sequencing and analysis of an Escherichia coli phage vB_EcoM-ep3 with a novel lysin, Lysep3.
Virus Genes. 2015 Jun;50(3):487-97. doi: 10.1007/s11262-015-1195-8. Epub 2015 Apr 5.
4
Genetic characterization of Pseudomonas aeruginosa bacteriophage KPP10.
Arch Virol. 2012 Apr;157(4):733-8. doi: 10.1007/s00705-011-1210-x. Epub 2012 Jan 5.
5
Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A.
Virol J. 2011 Mar 26;8:142. doi: 10.1186/1743-422X-8-142.
6
Isolation of new Pseudomonas tolaasii bacteriophages and genomic investigation of the lytic phage BF7.
FEMS Microbiol Lett. 2012 Jul;332(2):162-9. doi: 10.1111/j.1574-6968.2012.02592.x. Epub 2012 May 28.
7
Complete genome sequence of vB_EcoM_ECO1230-10: a coliphage with therapeutic potential for bovine metritis.
Vet Microbiol. 2011 Mar 24;148(2-4):267-75. doi: 10.1016/j.vetmic.2010.08.034. Epub 2010 Sep 8.
8
Complete genome sequence of the giant Pseudomonas phage Lu11.
J Virol. 2012 Jun;86(11):6369-70. doi: 10.1128/JVI.00641-12.
9
Complete genome sequence of Phobos: a novel bacteriophage with unusual genomic features that infects Pseudomonas syringae.
Arch Virol. 2020 Jun;165(6):1485-1488. doi: 10.1007/s00705-020-04618-2. Epub 2020 Apr 4.
10
Genomic and Transcriptional Mapping of PaMx41, Archetype of a New Lineage of Bacteriophages Infecting Pseudomonas aeruginosa.
Appl Environ Microbiol. 2016 Oct 27;82(22):6541-6547. doi: 10.1128/AEM.01415-16. Print 2016 Nov 15.

引用本文的文献

1
Completing the BASEL phage collection to unlock hidden diversity for systematic exploration of phage-host interactions.
PLoS Biol. 2025 Apr 7;23(4):e3003063. doi: 10.1371/journal.pbio.3003063. eCollection 2025 Apr.
2
Poly-omic risk scores predict inflammatory bowel disease diagnosis.
mSystems. 2024 Jan 23;9(1):e0067723. doi: 10.1128/msystems.00677-23. Epub 2023 Dec 14.
3
The potential of bacteriophages to control Xanthomonas campestris pv. campestris at different stages of disease development.
Microb Biotechnol. 2022 Jun;15(6):1762-1782. doi: 10.1111/1751-7915.14004. Epub 2022 Jan 27.
4
Phage Therapy as a Focused Management Strategy in Aquaculture.
Int J Mol Sci. 2021 Sep 28;22(19):10436. doi: 10.3390/ijms221910436.
5
Mining of Gram-Negative Surface-Active Enzybiotic Candidates by Sequence-Based Calculation of Physicochemical Properties.
Front Microbiol. 2021 May 25;12:660403. doi: 10.3389/fmicb.2021.660403. eCollection 2021.
6
Prophage Genomics and Ecology in the Family .
Microorganisms. 2021 May 21;9(6):1115. doi: 10.3390/microorganisms9061115.
7
Molecular Characterization of Ahp2, a Lytic Bacteriophage of .
Viruses. 2021 Mar 14;13(3):477. doi: 10.3390/v13030477.
8
Characterisation of a newly detected bacteriophage infecting Bordetella bronchiseptica in swine.
Arch Virol. 2019 Jan;164(1):33-40. doi: 10.1007/s00705-018-4034-0. Epub 2018 Sep 18.
9
Identification and Characterization of Dpo42, a Novel Depolymerase Derived from the Phage vB_EcoM_ECOO78.
Front Microbiol. 2017 Aug 2;8:1460. doi: 10.3389/fmicb.2017.01460. eCollection 2017.
10
Different Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates.
Genome Biol Evol. 2015 Sep 26;7(10):2810-28. doi: 10.1093/gbe/evv184.

本文引用的文献

1
Exploring the risks of phage application in the environment.
Front Microbiol. 2013 Nov 29;4:358. doi: 10.3389/fmicb.2013.00358. eCollection 2013.
2
Understanding bacteriophage specificity in natural microbial communities.
Viruses. 2013 Mar 11;5(3):806-23. doi: 10.3390/v5030806.
3
Phage-driven loss of virulence in a fish pathogenic bacterium.
PLoS One. 2012 Dec 20;7(12):e53157. doi: 10.1371/journal.pone.0053157. Epub 2012 Dec 31.
4
Phage morphology recapitulates phylogeny: the comparative genomics of a new group of myoviruses.
PLoS One. 2012;7(7):e40102. doi: 10.1371/journal.pone.0040102. Epub 2012 Jul 6.
5
Complete genome sequence of virulence-enhancing Siphophage VHS1 from Vibrio harveyi.
Appl Environ Microbiol. 2012 Apr;78(8):2790-6. doi: 10.1128/AEM.05929-11. Epub 2012 Feb 3.
6
The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties.
PLoS One. 2011 Apr 19;6(4):e18597. doi: 10.1371/journal.pone.0018597.
7
Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A.
Virol J. 2011 Mar 26;8:142. doi: 10.1186/1743-422X-8-142.
8
Complete genome sequence of vB_EcoM_ECO1230-10: a coliphage with therapeutic potential for bovine metritis.
Vet Microbiol. 2011 Mar 24;148(2-4):267-75. doi: 10.1016/j.vetmic.2010.08.034. Epub 2010 Sep 8.
9
Bacteriophage resistance mechanisms.
Nat Rev Microbiol. 2010 May;8(5):317-27. doi: 10.1038/nrmicro2315. Epub 2010 Mar 29.
10
Phage therapy in clinical practice: treatment of human infections.
Curr Pharm Biotechnol. 2010 Jan;11(1):69-86. doi: 10.2174/138920110790725401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验