Kawato Yasuhiko, Yasuike Motoshige, Nakamura Yoji, Shigenobu Yuya, Fujiwara Atushi, Sano Motohiko, Nakai Toshihiro
Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan.
Appl Environ Microbiol. 2015 Feb;81(3):874-81. doi: 10.1128/AEM.03038-14. Epub 2014 Nov 21.
Pseudomonas plecoglossicida is a lethal pathogen of ayu (Plecoglossus altivelis) in Japan and is responsible for substantial economic costs to ayu culture. Previously, we demonstrated the efficacy of phage therapy against P. plecoglossicida infection using two lytic phages (PPpW-3 and PPpW-4) (S. C. Park, I. Shimamura, M. Fukunaga, K. Mori, and T. Nakai, Appl Environ Microbiol 66:1416-1422, 2000, http://dx.doi.org/10.1128/AEM.66.4.1416-1422.2000; S. C. Park and T. Nakai, Dis Aquat Org 53:33-39, 2003, http://dx.doi.org/10.3354/dao053033). In the present study, the complete genome sequences of these therapeutic P. plecoglossicida phages were determined and analyzed for deleterious factors as therapeutic agents. The genome of PPpW-3 (myovirus) consisted of 43,564 bp with a GC content of 61.1% and 66 predicted open reading frames (ORFs). Approximately half of the genes were similar to the genes of the Escherichia coli phage vB_EcoM_ECO1230-10 (myovirus). The genome of PPpW-4 (podovirus) consisted of 41,386 bp with a GC content of 56.8% and 50 predicted ORFs. More than 70% of the genes were similar to the genes of Pseudomonas fluorescens phage ϕIBB-PF7A and Pseudomonas putida phage ϕ15 (podoviruses). The whole-genome analysis revealed that no known virulence genes were present in PPpW-3 and PPpW-4. An integrase gene was found in PPpW-3, but other factors used for lysogeny were not confirmed. The PCR detection of phage genes in phage-resistant variants provided no evidence of lysogenic activity in PPpW-3 and PPpW-4. We conclude that these two lytic phages qualify as therapeutic agents.
嗜水气单胞菌假单胞菌是日本香鱼(Plecoglossus altivelis)的一种致命病原体,给香鱼养殖带来了巨大的经济损失。此前,我们利用两种裂解性噬菌体(PPpW - 3和PPpW - 4)证明了噬菌体疗法对嗜水气单胞菌假单胞菌感染的有效性(S.C. Park、I. Shimamura、M. Fukunaga、K. Mori和T. Nakai,《应用与环境微生物学》66:1416 - 1422,2000年,http://dx.doi.org/10.1128/AEM.66.4.1416 - 1422.2000;S.C. Park和T. Nakai,《水生生物疾病》53:33 - 39,2003年,http://dx.doi.org/10.3354/dao053033)。在本研究中,测定了这些治疗性嗜水气单胞菌假单胞菌噬菌体的完整基因组序列,并分析了其作为治疗剂的有害因素。PPpW - 3(肌尾噬菌体)的基因组由43,564个碱基对组成,GC含量为61.1%,有66个预测的开放阅读框(ORF)。大约一半的基因与大肠杆菌噬菌体vB_EcoM_ECO1230 - 10(肌尾噬菌体)的基因相似。PPpW - 4(短尾噬菌体)的基因组由41,386个碱基对组成,GC含量为56.8%,有50个预测的ORF。超过70%的基因与荧光假单胞菌噬菌体ϕIBB - PF7A和恶臭假单胞菌噬菌体ϕ15(短尾噬菌体)的基因相似。全基因组分析表明,PPpW - 3和PPpW - 4中不存在已知的毒力基因。在PPpW - 3中发现了一个整合酶基因,但未证实其他用于溶原性的因素。对噬菌体抗性变体中噬菌体基因的PCR检测没有提供PPpW - 3和PPpW - 4溶原性活性的证据。我们得出结论,这两种裂解性噬菌体符合治疗剂的标准。