Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA.
Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland; Ph.D. Program in Molecular Life Sciences, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland.
Cell. 2014 Nov 20;159(5):1042-1055. doi: 10.1016/j.cell.2014.10.042.
The eukaryotic chaperonin TRiC (also called CCT) is the obligate chaperone for many essential proteins. TRiC is hetero-oligomeric, comprising two stacked rings of eight different subunits each. Subunit diversification from simpler archaeal chaperonins appears linked to proteome expansion. Here, we integrate structural, biophysical, and modeling approaches to identify the hitherto unknown substrate-binding site in TRiC and uncover the basis of substrate recognition. NMR and modeling provided a structural model of a chaperonin-substrate complex. Mutagenesis and crosslinking-mass spectrometry validated the identified substrate-binding interface and demonstrate that TRiC contacts full-length substrates combinatorially in a subunit-specific manner. The binding site of each subunit has a distinct, evolutionarily conserved pattern of polar and hydrophobic residues specifying recognition of discrete substrate motifs. The combinatorial recognition of polypeptides broadens the specificity of TRiC and may direct the topology of bound polypeptides along a productive folding trajectory, contributing to TRiC's unique ability to fold obligate substrates.
真核伴侣蛋白 TRiC(也称为 CCT)是许多必需蛋白质的必需伴侣蛋白。TRiC 是异源寡聚体,由两个堆叠的八聚体环组成,每个环由八个不同的亚基组成。从更简单的古菌伴侣蛋白中出现的亚基多样化似乎与蛋白质组的扩张有关。在这里,我们综合了结构、生物物理和建模方法,以确定 TRiC 中迄今为止未知的底物结合位点,并揭示底物识别的基础。NMR 和建模提供了伴侣蛋白-底物复合物的结构模型。突变和交联-质谱验证了鉴定的底物结合界面,并证明 TRiC 以亚基特异性的方式组合地接触全长底物。每个亚基的结合位点都具有独特的、进化上保守的极性和疏水性残基模式,指定对离散底物基序的识别。多肽的组合识别拓宽了 TRiC 的特异性,并可能沿着产生活性折叠轨迹的方向指导结合多肽的拓扑结构,这有助于 TRiC 折叠必需底物的独特能力。