Suppr超能文献

开发用于高密度培养人类多能干细胞的明确且可扩展的3D培养系统。

Developing Defined and Scalable 3D Culture Systems for Culturing Human Pluripotent Stem Cells at High Densities.

作者信息

Lei Yuguo, Jeong Daeun, Xiao Jifang, Schaffer David V

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA ; Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA ; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, 94720, USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, USA.

出版信息

Cell Mol Bioeng. 2014 Jun;7(2):172-183. doi: 10.1007/s12195-014-0333-z.

Abstract

Human pluripotent stem cells (hPSCs) - including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) - are very promising candidates for cell therapies, tissue engineering, high throughput pharmacology screens, and toxicity testing. These applications require large numbers of high quality cells; however, scalable production of human pluripotent stem cells and their derivatives at a high density and under well-defined conditions has been a challenge. We recently reported a simple, efficient, fully defined, scalable, and good manufacturing practice (GMP) compatible 3D culture system based on a thermoreversible hydrogel for hPSC expansion and differentiation. Here, we describe additional design rationale and characterization of this system. For instance, we have determined that culturing hPSCs as a suspension in a liquid medium can exhibit lower volumetric yields due to cell agglomeration and possible shear force-induced cell loss. By contrast, using hydrogels as 3D scaffolds for culturing hPSCs reduces aggregation and may insulate from shear forces. Additionally, hydrogel-based 3D culture systems can support efficient hPSC expansion and differentiation at a high density if compatible with hPSC biology. Finally, there are considerable opportunities for future development to further enhance hydrogel-based 3D culture systems for producing hPSCs and their progeny.

摘要

人类多能干细胞(hPSC)——包括胚胎干细胞(hESC)和诱导多能干细胞(hiPSC)——是细胞治疗、组织工程、高通量药理学筛选和毒性测试中非常有前景的候选者。这些应用需要大量高质量的细胞;然而,在明确的条件下以高密度可扩展地生产人类多能干细胞及其衍生物一直是一个挑战。我们最近报道了一种基于热可逆水凝胶的简单、高效、完全明确、可扩展且符合药品生产质量管理规范(GMP)的3D培养系统,用于hPSC的扩增和分化。在此,我们描述该系统的更多设计原理和特性。例如,我们已经确定,由于细胞团聚和可能的剪切力诱导的细胞损失,将hPSC作为悬浮液培养在液体培养基中可能会表现出较低的体积产量。相比之下,使用水凝胶作为3D支架来培养hPSC可减少聚集,并可能使细胞免受剪切力影响。此外,如果与hPSC生物学特性兼容,基于水凝胶的3D培养系统可以支持hPSC在高密度下的高效扩增和分化。最后,未来还有相当多的发展机会来进一步改进基于水凝胶的3D培养系统,以生产hPSC及其后代。

相似文献

2
A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):E5039-48. doi: 10.1073/pnas.1309408110. Epub 2013 Nov 18.
3
Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors.
Stem Cells Transl Med. 2016 Oct;5(10):1289-1301. doi: 10.5966/sctm.2015-0253. Epub 2016 Jul 1.
6
Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture.
Adv Healthc Mater. 2018 Jun;7(12):e1800225. doi: 10.1002/adhm.201800225. Epub 2018 May 2.
8
A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
Stem Cells Transl Med. 2015 Dec;4(12):1482-94. doi: 10.5966/sctm.2014-0275. Epub 2015 Oct 28.
9
Hydrogel-Based Bioprocess for Scalable Manufacturing of Human Pluripotent Stem Cell-Derived Neural Stem Cells.
ACS Appl Mater Interfaces. 2018 Sep 5;10(35):29238-29250. doi: 10.1021/acsami.8b05780. Epub 2018 Aug 22.
10
Clump-passaging-based efficient 3D culture of human pluripotent stem cells under chemically defined conditions.
Biochem Biophys Res Commun. 2017 Nov 4;493(1):723-730. doi: 10.1016/j.bbrc.2017.08.124. Epub 2017 Aug 30.

引用本文的文献

1
Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating.
Front Chem Eng. 2022;4. doi: 10.3389/fceng.2022.1031395. Epub 2022 Oct 20.
2
Analysis of the effects of bench-scale cell culture platforms and inoculum cell concentrations on PSC aggregate formation and culture.
Front Bioeng Biotechnol. 2023 Dec 1;11:1267007. doi: 10.3389/fbioe.2023.1267007. eCollection 2023.
3
Organ Chips and Visualization of Biological Systems.
Adv Exp Med Biol. 2023;1199:155-183. doi: 10.1007/978-981-32-9902-3_8.
4
Fabricating 3-dimensional human brown adipose microtissues for transplantation studies.
Bioact Mater. 2022 Oct 27;22:518-534. doi: 10.1016/j.bioactmat.2022.10.022. eCollection 2023 Apr.
5
A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing.
iScience. 2022 Aug 25;25(10):104971. doi: 10.1016/j.isci.2022.104971. eCollection 2022 Oct 21.
7
Perspectives on scaling production of adipose tissue for food applications.
Biomaterials. 2022 Jan;280:121273. doi: 10.1016/j.biomaterials.2021.121273. Epub 2021 Nov 29.
8
Theoretical and Experimental Investigation of Alginate Microtube Extrusion for Cell Culture Applications.
Biochem Eng J. 2022 Jan;177. doi: 10.1016/j.bej.2021.108236. Epub 2021 Oct 14.
10
Lipid-Based Drug Delivery Systems in Regenerative Medicine.
Materials (Basel). 2021 Sep 17;14(18):5371. doi: 10.3390/ma14185371.

本文引用的文献

1
A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):E5039-48. doi: 10.1073/pnas.1309408110. Epub 2013 Nov 18.
2
Derivation of novel human ground state naive pluripotent stem cells.
Nature. 2013 Dec 12;504(7479):282-6. doi: 10.1038/nature12745. Epub 2013 Oct 30.
3
Adapting human pluripotent stem cells to high-throughput and high-content screening.
Nat Protoc. 2013 Jan;8(1):111-30. doi: 10.1038/nprot.2012.139. Epub 2012 Dec 20.
5
A scalable system for production of functional pancreatic progenitors from human embryonic stem cells.
PLoS One. 2012;7(5):e37004. doi: 10.1371/journal.pone.0037004. Epub 2012 May 18.
6
Process engineering of human pluripotent stem cells for clinical application.
Trends Biotechnol. 2012 Jun;30(6):350-9. doi: 10.1016/j.tibtech.2012.03.003. Epub 2012 Apr 26.
7
Scalable GMP compliant suspension culture system for human ES cells.
Stem Cell Res. 2012 May;8(3):388-402. doi: 10.1016/j.scr.2012.02.001. Epub 2012 Feb 22.
8
Heart disease and stroke statistics--2012 update: a report from the American Heart Association.
Circulation. 2012 Jan 3;125(1):e2-e220. doi: 10.1161/CIR.0b013e31823ac046. Epub 2011 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验