Suppr超能文献

解剖学引导的基于密集个体化和共同连通性的皮质地标(A-DICCCOL)

Anatomy-guided Dense Individualized and Common Connectivity-based Cortical Landmarks (A-DICCCOL).

作者信息

Jiang Xi, Zhang Tuo, Zhu Dajiang, Li Kaiming, Chen Hanbo, Lv Jinglei, Hu Xintao, Han Junwei, Shen Dinggang, Guo Lei, Liu Tianming

出版信息

IEEE Trans Biomed Eng. 2015 Apr;62(4):1108-19. doi: 10.1109/TBME.2014.2369491. Epub 2014 Nov 20.

Abstract

Establishment of structural and functional correspondences of human brain that can be quantitatively encoded and reproduced across different subjects and populations is one of the key issues in brain mapping. As an attempt to address this challenge, our recently developed Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system reported 358 connectional landmarks, each of which possesses consistent DTI-derived white matter fiber connection pattern that is reproducible in over 240 healthy brains. However, the DICCCOL system can be substantially improved by integrating anatomical and morphological information during landmark initialization and optimization procedures. In this paper, we present a novel anatomy-guided landmark discovery framework that defines and optimizes landmarks via integrating rich anatomical, morphological, and fiber connectional information for landmark initialization, group-wise optimization and prediction, which are formulated and solved as an energy minimization problem. The framework finally determined 555 consistent connectional landmarks. Validation studies demonstrated that the 555 landmarks are reproducible, predictable, and exhibited reasonably accurate anatomical, connectional, and functional correspondences across individuals and populations and thus are named anatomy-guided DICCCOL or A-DICCCOL. This A-DICCCOL system represents common cortical architectures with anatomical, connectional, and functional correspondences across different subjects and would potentially provide opportunities for various applications in brain science.

摘要

建立能够在不同个体和人群中进行定量编码和再现的人类大脑结构与功能对应关系,是脑图谱研究中的关键问题之一。作为应对这一挑战的尝试,我们最近开发的基于密集个体化和共同连接的皮质地标(DICCCOL)系统报告了358个连接地标,每个地标都具有一致的基于扩散张量成像(DTI)得出的白质纤维连接模式,该模式在240多个健康大脑中均可再现。然而,通过在地标初始化和优化过程中整合解剖学和形态学信息,DICCCOL系统可以得到实质性改进。在本文中,我们提出了一种新颖的解剖学引导地标发现框架,该框架通过整合丰富的解剖学、形态学和纤维连接信息来定义和优化地标,用于地标初始化、组内优化和预测,并将其公式化为能量最小化问题并求解。该框架最终确定了555个一致的连接地标。验证研究表明,这555个地标具有可重复性、可预测性,并且在个体和人群中表现出合理准确的解剖学、连接性和功能对应关系,因此被命名为解剖学引导的DICCCOL或A-DICCCOL。这个A-DICCCOL系统代表了不同个体间具有解剖学、连接性和功能对应关系的常见皮质结构,并可能为脑科学中的各种应用提供机会。

相似文献

1
Anatomy-guided Dense Individualized and Common Connectivity-based Cortical Landmarks (A-DICCCOL).
IEEE Trans Biomed Eng. 2015 Apr;62(4):1108-19. doi: 10.1109/TBME.2014.2369491. Epub 2014 Nov 20.
2
Anatomy-guided discovery of large-scale consistent connectivity-based cortical landmarks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):617-25. doi: 10.1007/978-3-642-40760-4_77.
3
DICCCOL: dense individualized and common connectivity-based cortical landmarks.
Cereb Cortex. 2013 Apr;23(4):786-800. doi: 10.1093/cercor/bhs072. Epub 2012 Apr 5.
5
Group-wise consistent cortical parcellation based on connectional profiles.
Med Image Anal. 2016 Aug;32:32-45. doi: 10.1016/j.media.2016.02.009. Epub 2016 Mar 14.
7
Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering.
IEEE Trans Med Imaging. 2013 Sep;32(9):1576-86. doi: 10.1109/TMI.2013.2259248. Epub 2013 May 2.
8
Group-wise FMRI activation detection on DICCCOL landmarks.
Neuroinformatics. 2014 Oct;12(4):513-34. doi: 10.1007/s12021-014-9226-5.
9
Construction of multi-scale consistent brain networks: methods and applications.
PLoS One. 2015 Apr 13;10(4):e0118175. doi: 10.1371/journal.pone.0118175. eCollection 2015.
10
Diffusion tensor imaging reveals evolution of primate brain architectures.
Brain Struct Funct. 2013 Nov;218(6):1429-50. doi: 10.1007/s00429-012-0468-4. Epub 2012 Nov 8.

引用本文的文献

1
Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior.
Psychoradiology. 2021 Mar 25;1(1):23-41. doi: 10.1093/psyrad/kkab002. eCollection 2021 Mar.
2
Functional Subdivisions of the Cerebellum in Naturalistic Paradigm Functional Magnetic Resonance Imaging.
Front Neurosci. 2021 Dec 17;15:748561. doi: 10.3389/fnins.2021.748561. eCollection 2021.
4
Discovering hierarchical common brain networks via multimodal deep belief network.
Med Image Anal. 2019 May;54:238-252. doi: 10.1016/j.media.2019.03.011. Epub 2019 Mar 29.
6
Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space.
Med Image Anal. 2018 May;46:189-201. doi: 10.1016/j.media.2018.03.004. Epub 2018 Mar 16.
8
Riemannian Metric Optimization for Connectivity-driven Surface Mapping.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:228-236. doi: 10.1007/978-3-319-46720-7_27. Epub 2016 Oct 2.
9
Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.
IEEE Trans Biomed Eng. 2018 Jun;65(6):1183-1192. doi: 10.1109/TBME.2016.2598728. Epub 2016 Aug 10.
10
Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex.
Hum Brain Mapp. 2015 Dec;36(12):5301-19. doi: 10.1002/hbm.23013. Epub 2015 Oct 14.

本文引用的文献

1
Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:80-104. doi: 10.1016/j.neuroimage.2013.05.012. Epub 2013 May 21.
2
A functional model of cortical gyri and sulci.
Brain Struct Funct. 2014 Jul;219(4):1473-91. doi: 10.1007/s00429-013-0581-z. Epub 2013 May 21.
3
DICCCOL: dense individualized and common connectivity-based cortical landmarks.
Cereb Cortex. 2013 Apr;23(4):786-800. doi: 10.1093/cercor/bhs072. Epub 2012 Apr 5.
4
Connectomics signatures of prenatal cocaine exposure affected adolescent brains.
Hum Brain Mapp. 2013 Oct;34(10):2494-510. doi: 10.1002/hbm.22082. Epub 2012 Mar 28.
5
Inferring consistent functional interaction patterns from natural stimulus FMRI data.
Neuroimage. 2012 Jul 16;61(4):987-99. doi: 10.1016/j.neuroimage.2012.01.142. Epub 2012 Mar 14.
6
Visual analytics of brain networks.
Neuroimage. 2012 May 15;61(1):82-97. doi: 10.1016/j.neuroimage.2012.02.075. Epub 2012 Mar 5.
8
Anatomical connectivity patterns predict face selectivity in the fusiform gyrus.
Nat Neurosci. 2011 Dec 25;15(2):321-7. doi: 10.1038/nn.3001.
9
Axonal fiber terminations concentrate on gyri.
Cereb Cortex. 2012 Dec;22(12):2831-9. doi: 10.1093/cercor/bhr361. Epub 2011 Dec 20.
10
FSL.
Neuroimage. 2012 Aug 15;62(2):782-90. doi: 10.1016/j.neuroimage.2011.09.015. Epub 2011 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验