Suppr超能文献

病毒表观遗传学。

Viral epigenetics.

作者信息

Milavetz Barry I, Balakrishnan Lata

机构信息

Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Stop 9037, 501 N. Columbia Rd., Grand Forks, ND, 58202, USA,

出版信息

Methods Mol Biol. 2015;1238:569-96. doi: 10.1007/978-1-4939-1804-1_30.

Abstract

DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus's normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can have either a direct or indirect effect on epigenetic regulation of cellular expression. Nevertheless, many questions still remain with respect to the specific mechanisms underlying epigenetic regulation of the viruses and transformation.

摘要

包括多瘤病毒、腺病毒、乳头瘤病毒和疱疹病毒家族成员在内的DNA肿瘤病毒,目前是人们密切关注的对象,因为表观遗传学在控制病毒生命周期以及将正常细胞转化为癌细胞的过程中所起的作用。迄今为止,这些研究主要集中在组蛋白修饰、核小体定位和DNA甲基化在调节感染生物学后果方面的作用。使用从简单的染色质免疫沉淀(ChIP)到ChIP芯片和ChIP测序等多种策略和技术来鉴定组蛋白修饰,通过核酸酶消化到全基因组下一代测序来鉴定核小体定位,以及通过亚硫酸氢盐处理到甲基化DNA免疫沉淀(MeDIP)来鉴定DNA甲基化位点,这些病毒的表观遗传调控正逐渐被人们更好地理解。虽然这些病毒彼此之间以及与细胞染色质可能存在显著差异,但表观遗传学的作用似乎相对相似。在病毒基因组中,核小体通过相关的组蛋白修饰,特别是组蛋白乙酰化,来组织以便适当基因的表达。DNA甲基化是疱疹病毒潜伏感染期间典型基因沉默的一部分。在像多瘤病毒、腺病毒和乳头瘤病毒这样的简单肿瘤病毒中,细胞转化是通过病毒基因组的整合发生的,从而破坏了病毒的正常调控。这导致能够重定向细胞基因表达的关键病毒基因的失控表达。重定向的细胞表达是细胞信号传导或转录失调发生的间接表观遗传调控的结果,或者是诸如组蛋白去乙酰化酶等表观遗传辅因子成为靶点的直接表观遗传调控的结果。在更复杂的疱疹病毒中,转化是病毒潜伏蛋白和RNA表达的结果,这些蛋白和RNA同样可以对细胞表达的表观遗传调控产生直接或间接影响。然而,关于病毒表观遗传调控和转化的具体机制,仍然存在许多问题。

相似文献

1
Viral epigenetics.
Methods Mol Biol. 2015;1238:569-96. doi: 10.1007/978-1-4939-1804-1_30.
2
Epigenetic Regulation of Viral Biological Processes.
Viruses. 2017 Nov 17;9(11):346. doi: 10.3390/v9110346.
3
Epigenetic Alterations in Human Papillomavirus-Associated Cancers.
Viruses. 2017 Sep 1;9(9):248. doi: 10.3390/v9090248.
4
Host-virus interactions: from the perspectives of epigenetics.
Rev Med Virol. 2014 Jul;24(4):223-41. doi: 10.1002/rmv.1783. Epub 2014 Feb 21.
5
Gene methylation in gastric cancer.
Clin Chim Acta. 2013 Sep 23;424:53-65. doi: 10.1016/j.cca.2013.05.002. Epub 2013 May 10.
6
Bioinformatics Tools for Genome-Wide Epigenetic Research.
Adv Exp Med Biol. 2017;978:489-512. doi: 10.1007/978-3-319-53889-1_25.
7
Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies.
Am J Epidemiol. 2016 Jan 15;183(2):96-109. doi: 10.1093/aje/kwv187. Epub 2015 Dec 30.
8
Analysis of gene-specific and genome-wide sperm DNA methylation.
Methods Mol Biol. 2013;927:451-8. doi: 10.1007/978-1-62703-038-0_39.
9
A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells.
Anim Genet. 2014 Aug;45 Suppl 1:40-50. doi: 10.1111/age.12147. Epub 2014 Jul 2.
10
Epigenetic Dysregulation in Virus-Associated Neoplasms.
Adv Exp Med Biol. 2016;879:71-90. doi: 10.1007/978-3-319-24738-0_4.

引用本文的文献

2
The ageing virus hypothesis: Epigenetic ageing beyond the Tree of Life.
Bioessays. 2025 Jan;47(1):e2400099. doi: 10.1002/bies.202400099. Epub 2024 Oct 14.
3
Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis.
Front Cell Infect Microbiol. 2024 Mar 20;14:1359766. doi: 10.3389/fcimb.2024.1359766. eCollection 2024.
4
Epigenetic modulation of myeloid cell functions in HIV and SARS-CoV-2 infection.
Mol Biol Rep. 2024 Feb 24;51(1):342. doi: 10.1007/s11033-024-09266-2.
5
The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus.
Biology (Basel). 2024 Jan 27;13(2):77. doi: 10.3390/biology13020077.
6
Lactate-lactylation-HSPA6 axis promotes PRRSV replication by impairing IFN-β production.
J Virol. 2024 Jan 23;98(1):e0167023. doi: 10.1128/jvi.01670-23. Epub 2023 Dec 13.
7
Dissecting viral infections, one cell at a time, by single-cell technologies.
Microbes Infect. 2024 Sep-Oct;26(7):105268. doi: 10.1016/j.micinf.2023.105268. Epub 2023 Nov 24.
8
Pulmonary Pathogen-Induced Epigenetic Modifications.
Epigenomes. 2023 Jul 6;7(3):13. doi: 10.3390/epigenomes7030013.
9
H3K27me3 of Rnf19a promotes neuroinflammatory response during Japanese encephalitis virus infection.
J Neuroinflammation. 2023 Jul 21;20(1):168. doi: 10.1186/s12974-023-02852-4.
10
Hepatitis C virus fitness can influence the extent of infection-mediated epigenetic modifications in the host cells.
Front Cell Infect Microbiol. 2023 Mar 13;13:1057082. doi: 10.3389/fcimb.2023.1057082. eCollection 2023.

本文引用的文献

3
Epigenetic regulation of polyomavirus JC.
Virol J. 2013 Aug 23;10:264. doi: 10.1186/1743-422X-10-264.
4
Epigenetics of human papillomaviruses.
Virology. 2013 Oct;445(1-2):205-12. doi: 10.1016/j.virol.2013.07.016. Epub 2013 Aug 13.
5
Transcription and replication result in distinct epigenetic marks following repression of early gene expression.
Front Genet. 2013 Jul 30;4:140. doi: 10.3389/fgene.2013.00140. eCollection 2013.
6
Histone variants in development and diseases.
J Genet Genomics. 2013 Jul 20;40(7):355-65. doi: 10.1016/j.jgg.2013.05.001. Epub 2013 May 20.
7
Integrated virus-host methylome analysis in head and neck squamous cell carcinoma.
Epigenetics. 2013 Sep;8(9):953-61. doi: 10.4161/epi.25614. Epub 2013 Jul 18.
9
Developmental roles of histone H3 variants and their chaperones.
Trends Genet. 2013 Nov;29(11):630-40. doi: 10.1016/j.tig.2013.06.002. Epub 2013 Jul 2.
10
Epstein-Barr virus-associated lymphoproliferative disorders.
Postepy Hig Med Dosw (Online). 2013 May 24;67:481-90. doi: 10.5604/17322693.1050999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验