Suppr超能文献

一种并行化 Metropolis-Hastings 算法的通用构造。

A general construction for parallelizing Metropolis-Hastings algorithms.

机构信息

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17408-13. doi: 10.1073/pnas.1408184111. Epub 2014 Nov 24.

Abstract

Markov chain Monte Carlo methods (MCMC) are essential tools for solving many modern-day statistical and computational problems; however, a major limitation is the inherently sequential nature of these algorithms. In this paper, we propose a natural generalization of the Metropolis-Hastings algorithm that allows for parallelizing a single chain using existing MCMC methods. We do so by proposing multiple points in parallel, then constructing and sampling from a finite-state Markov chain on the proposed points such that the overall procedure has the correct target density as its stationary distribution. Our approach is generally applicable and straightforward to implement. We demonstrate how this construction may be used to greatly increase the computational speed and statistical efficiency of a variety of existing MCMC methods, including Metropolis-Adjusted Langevin Algorithms and Adaptive MCMC. Furthermore, we show how it allows for a principled way of using every integration step within Hamiltonian Monte Carlo methods; our approach increases robustness to the choice of algorithmic parameters and results in increased accuracy of Monte Carlo estimates with little extra computational cost.

摘要

马尔可夫链蒙特卡罗方法(MCMC)是解决许多现代统计和计算问题的重要工具;然而,这些算法的一个主要限制是其固有的顺序性质。在本文中,我们提出了一种 Metropolis-Hastings 算法的自然推广,该方法允许使用现有的 MCMC 方法并行化单个链。我们通过并行提出多个点,然后在提议的点上构建和采样一个有限状态马尔可夫链,使得整个过程具有正确的目标密度作为其平稳分布。我们的方法具有普遍适用性,并且易于实现。我们演示了如何使用这种构造来大大提高各种现有 MCMC 方法的计算速度和统计效率,包括 Metropolis-Adjusted Langevin 算法和自适应 MCMC。此外,我们展示了它如何允许在 Hamiltonian 蒙特卡罗方法中使用每个积分步骤的原则性方法;我们的方法增加了对算法参数选择的鲁棒性,并以较小的额外计算成本提高了蒙特卡罗估计的准确性。

相似文献

1
A general construction for parallelizing Metropolis-Hastings algorithms.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17408-13. doi: 10.1073/pnas.1408184111. Epub 2014 Nov 24.
2
A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
Neural Comput. 2013 Aug;25(8):2199-234. doi: 10.1162/NECO_a_00466. Epub 2013 Apr 22.
3
Convergence Rates for the Constrained Sampling via Langevin Monte Carlo.
Entropy (Basel). 2023 Aug 18;25(8):1234. doi: 10.3390/e25081234.
4
Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046704. doi: 10.1103/PhysRevE.78.046704. Epub 2008 Oct 20.
5
A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
Technometrics. 2016;58(3):604-318. doi: 10.1080/00401706.2016.1142905. Epub 2016 Jul 8.
6
Two-Stage Metropolis-Hastings for Tall Data.
J Classif. 2018 Apr;35(1):29-51. doi: 10.1007/s00357-018-9248-z. Epub 2018 Mar 16.
7
Searching for efficient Markov chain Monte Carlo proposal kernels.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19307-12. doi: 10.1073/pnas.1311790110. Epub 2013 Nov 11.
8
BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO.
Int J Uncertain Quantif. 2020;10(6):515-542. doi: 10.1615/int.j.uncertaintyquantification.2020033241.
9
Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference.
Bioinformatics. 2004 Feb 12;20(3):407-15. doi: 10.1093/bioinformatics/btg427. Epub 2004 Jan 22.

引用本文的文献

1
A quantum parallel Markov chain Monte Carlo.
J Comput Graph Stat. 2023;32(4):1402-1415. doi: 10.1080/10618600.2023.2195890. Epub 2023 Apr 21.
2
Generating MCMC proposals by randomly rotating the regular simplex.
J Multivar Anal. 2023 Mar;194. doi: 10.1016/j.jmva.2022.105106. Epub 2022 Sep 23.
4
Bayesian inference of multi-point macromolecular architecture mixtures at nanometre resolution.
PLoS Comput Biol. 2022 Dec 27;18(12):e1010765. doi: 10.1371/journal.pcbi.1010765. eCollection 2022 Dec.
6
Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.
Phys Rev X. 2020 Jan-Mar;10(1). doi: 10.1103/physrevx.10.011021. Epub 2020 Jan 30.
8
Parallel Prefetching for Canonical Ensemble Monte Carlo Simulations.
J Phys Chem A. 2020 Sep 3;124(35):7191-7198. doi: 10.1021/acs.jpca.0c05242. Epub 2020 Aug 25.
9
Bayesian Parameter Identification for Turing Systems on Stationary and Evolving Domains.
Bull Math Biol. 2019 Jan;81(1):81-104. doi: 10.1007/s11538-018-0518-z. Epub 2018 Oct 11.
10
Accelerating MCMC algorithms.
Wiley Interdiscip Rev Comput Stat. 2018 Sep-Oct;10(5):e1435. doi: 10.1002/wics.1435. Epub 2018 Jun 13.

本文引用的文献

1
Searching for efficient Markov chain Monte Carlo proposal kernels.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19307-12. doi: 10.1073/pnas.1311790110. Epub 2013 Nov 11.
2
On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods.
J Comput Graph Stat. 2010 Dec 1;19(4):769-789. doi: 10.1198/jcgs.2010.10039.
3
Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures.
J Comput Graph Stat. 2010 Jun 1;19(2):419-438. doi: 10.1198/jcgs.2010.10016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验