Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17408-13. doi: 10.1073/pnas.1408184111. Epub 2014 Nov 24.
Markov chain Monte Carlo methods (MCMC) are essential tools for solving many modern-day statistical and computational problems; however, a major limitation is the inherently sequential nature of these algorithms. In this paper, we propose a natural generalization of the Metropolis-Hastings algorithm that allows for parallelizing a single chain using existing MCMC methods. We do so by proposing multiple points in parallel, then constructing and sampling from a finite-state Markov chain on the proposed points such that the overall procedure has the correct target density as its stationary distribution. Our approach is generally applicable and straightforward to implement. We demonstrate how this construction may be used to greatly increase the computational speed and statistical efficiency of a variety of existing MCMC methods, including Metropolis-Adjusted Langevin Algorithms and Adaptive MCMC. Furthermore, we show how it allows for a principled way of using every integration step within Hamiltonian Monte Carlo methods; our approach increases robustness to the choice of algorithmic parameters and results in increased accuracy of Monte Carlo estimates with little extra computational cost.
马尔可夫链蒙特卡罗方法(MCMC)是解决许多现代统计和计算问题的重要工具;然而,这些算法的一个主要限制是其固有的顺序性质。在本文中,我们提出了一种 Metropolis-Hastings 算法的自然推广,该方法允许使用现有的 MCMC 方法并行化单个链。我们通过并行提出多个点,然后在提议的点上构建和采样一个有限状态马尔可夫链,使得整个过程具有正确的目标密度作为其平稳分布。我们的方法具有普遍适用性,并且易于实现。我们演示了如何使用这种构造来大大提高各种现有 MCMC 方法的计算速度和统计效率,包括 Metropolis-Adjusted Langevin 算法和自适应 MCMC。此外,我们展示了它如何允许在 Hamiltonian 蒙特卡罗方法中使用每个积分步骤的原则性方法;我们的方法增加了对算法参数选择的鲁棒性,并以较小的额外计算成本提高了蒙特卡罗估计的准确性。