From the Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine.
Circ Heart Fail. 2015 Jan;8(1):119-27. doi: 10.1161/CIRCHEARTFAILURE.114.001496. Epub 2014 Nov 25.
The failing heart displays increased glycolytic flux that is not matched by a commensurate increase in glucose oxidation. This mismatch induces increased anaplerotic flux and inefficient glucose metabolism. We previously found adult transgenic mouse hearts expressing the fetal troponin I isoform, (ssTnI) to be protected from ischemia by increased glycolysis. In this study, we investigated the metabolic response of adult mouse hearts expressing ssTnI to chronic pressure overload.
At 2 to 3 months of age, ssTnI mice or their nontransgenic littermates underwent aortic constriction (TAC). TAC induced a 25% increase in nontransgenic heart size but only a 7% increase in ssTnI hearts (P<0.05). Nontransgenic TAC developed diastolic dysfunction (65% increase in E/A ratio), whereas the E/A ratio actually decreased in ssTnI TAC. Isolated perfused hearts from nontransgenic TAC mice showed reduced cardiac function and reduced creatine phosphate:ATP (16% reduction), but ssTnI TAC hearts maintained cardiac function and energy charge. Contrasting nontransgenic TAC, ssTnI TAC significantly increased glucose oxidation at the expense of palmitate oxidation, preventing the increase in anaplerosis observed in nontransgenic TAC hearts. Elevated glucose oxidation was mediated by a reduction in pyruvate dehydrogenase kinase 4 expression, enabling pyruvate dehydrogenase to compete against anaplerotic enzymes for pyruvate carboxylation.
Expression of a single fetal myofilament protein into adulthood in the ssTnI-transgenic mouse heart induced downregulation of the gene expression response for pyruvate dehydrogenase kinase to pressure overload. The consequence of elevated pyruvate oxidation in ssTnI during TAC reduced anaplerotic flux, ameliorating inefficiencies in glucose oxidation, with energetic and functional protection against cardiac decompensation.
衰竭的心脏显示出增加的糖酵解通量,而没有相应增加的葡萄糖氧化。这种不匹配会导致增加的氨基转移通量和低效的葡萄糖代谢。我们之前发现表达胎儿肌钙蛋白 I 同工型(ssTnI)的成年转基因小鼠心脏通过增加糖酵解来免受缺血的影响。在这项研究中,我们研究了表达 ssTnI 的成年小鼠心脏对慢性压力超负荷的代谢反应。
在 2 到 3 个月大时,ssTnI 小鼠或其非转基因同窝仔接受主动脉缩窄(TAC)。TAC 导致非转基因心脏大小增加 25%,但 ssTnI 心脏仅增加 7%(P<0.05)。非转基因 TAC 发展为舒张功能障碍(E/A 比增加 65%),而 ssTnI TAC 的 E/A 比实际上降低了。非转基因 TAC 离体灌注心脏显示心功能降低和磷酸肌酸:ATP(减少 16%)降低,但 ssTnI TAC 心脏维持心功能和能量电荷。与非转基因 TAC 相反,ssTnI TAC 以牺牲棕榈酸氧化为代价显著增加葡萄糖氧化,防止非转基因 TAC 心脏中观察到的氨基转移增加。升高的葡萄糖氧化是通过降低丙酮酸脱氢酶激酶 4 表达介导的,使丙酮酸脱氢酶能够与氨基转移酶竞争丙酮酸羧化。
在 ssTnI 转基因小鼠心脏中,成年期表达单一胎儿肌丝蛋白会导致丙酮酸脱氢酶激酶对压力超负荷的基因表达反应下调。在 TAC 期间,ssTnI 中升高的丙酮酸氧化降低了氨基转移通量,改善了葡萄糖氧化的效率低下,从而对心脏失代偿提供能量和功能保护。