Jiang Congcong, Guo Zhaoyan, Zhu Ying, Liu Huan, Wan Meixiang, Jiang Lei
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (PR China).
ChemSusChem. 2015 Jan;8(1):158-63. doi: 10.1002/cssc.201402759. Epub 2014 Nov 25.
Developing efficient electrocatalysts for the oxygen reduction reaction (ORR) is critical for promoting the widespread application of fuel cells and metal-air batteries. Here, we develop a biological low-cost, ecofriendly method for the synthesis of Mn2 O3 micro-/nanocubes by calcination of MnCO3 precursors in an oxygen atmosphere. Microcubic MnCO3 precursors with an edge length of 2.5 μm were fabricated by dissimilatory metal-reducing Shewanella loihica PV-4 in the presence of MnO4 (-) as the sole electron acceptor under anaerobic conditions. After calcining the MnCO3 precursors at 500 and 700 °C, porous Mn2 O3 -500 and Mn2 O3 -700 also showed microcubic morphology, while their edge lengths decreased to 1.8 μm due to thermal decomposition. Moreover, the surfaces of the Mn2 O3 microcubes were covered by granular nanoparticles with average diameters in the range of 18-202 nm, depending on the calcination temperatures. Electrochemical measurements demonstrated that the porous Mn2 O3 -500 micro-/nanocubes exhibit promising catalytic activity towards the ORR in an alkaline medium, which should be due to a synergistic effect of the overlapping molecular orbitals of oxygen/manganese and the hierarchically porous structures that are favorable for oxygen absorption. Moreover, these Mn2 O3 micro-/nanocubes possess better stability than commercial Pt/C catalysts and methanol-tolerance property in alkaline solution. Thus the Shewanella-mediated biosynthesis method we provided here might be a new strategy for the preparation of various transition metal oxides as high-performance ORR electrocatalysts at low cost.
开发用于氧还原反应(ORR)的高效电催化剂对于推动燃料电池和金属空气电池的广泛应用至关重要。在此,我们开发了一种生物低成本、生态友好的方法,通过在氧气气氛中煅烧碳酸锰前驱体来合成三氧化二锰微/纳米立方体。在厌氧条件下,以MnO4(-)作为唯一电子受体,通过异化金属还原希瓦氏菌PV-4制备了边长为2.5μm的微立方碳酸锰前驱体。在500和700℃煅烧碳酸锰前驱体后,多孔的三氧化二锰-500和三氧化二锰-700也呈现微立方形态,但其边长由于热分解而减小至1.8μm。此外,根据煅烧温度的不同,三氧化二锰微立方体的表面覆盖着平均直径在18 - 202nm范围内的颗粒状纳米粒子。电化学测量表明,多孔的三氧化二锰-500微/纳米立方体在碱性介质中对ORR表现出有前景的催化活性,这应该归因于氧/锰重叠分子轨道的协同效应以及有利于氧吸收的分级多孔结构。此外,这些三氧化二锰微/纳米立方体在碱性溶液中比商业Pt/C催化剂具有更好的稳定性和甲醇耐受性。因此,我们在此提供的希瓦氏菌介导的生物合成方法可能是一种低成本制备各种过渡金属氧化物作为高性能ORR电催化剂的新策略。