Suppr超能文献

非生物胁迫和作物管理对谷物籽粒成分的影响:对食品质量和安全的启示。

Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.

作者信息

Halford Nigel G, Curtis Tanya Y, Chen Zhiwei, Huang Jianhua

机构信息

Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK

Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.

出版信息

J Exp Bot. 2015 Mar;66(5):1145-56. doi: 10.1093/jxb/eru473. Epub 2014 Nov 26.

Abstract

The effects of abiotic stresses and crop management on cereal grain composition are reviewed, focusing on phytochemicals, vitamins, fibre, protein, free amino acids, sugars, and oils. These effects are discussed in the context of nutritional and processing quality and the potential for formation of processing contaminants, such as acrylamide, furan, hydroxymethylfurfuryl, and trans fatty acids. The implications of climate change for cereal grain quality and food safety are considered. It is concluded that the identification of specific environmental stresses that affect grain composition in ways that have implications for food quality and safety and how these stresses interact with genetic factors and will be affected by climate change needs more investigation. Plant researchers and breeders are encouraged to address the issue of processing contaminants or risk appearing out of touch with major end-users in the food industry, and not to overlook the effects of environmental stresses and crop management on crop composition, quality, and safety as they strive to increase yield.

摘要

本文综述了非生物胁迫和作物管理对谷物籽粒成分的影响,重点关注植物化学物质、维生素、纤维、蛋白质、游离氨基酸、糖类和油脂。在营养和加工品质以及加工污染物(如丙烯酰胺、呋喃、羟甲基糠醛和反式脂肪酸)形成潜力的背景下讨论了这些影响。考虑了气候变化对谷物品质和食品安全的影响。得出的结论是,需要更多研究来确定以对食品质量和安全有影响的方式影响籽粒成分的特定环境胁迫,以及这些胁迫如何与遗传因素相互作用以及将如何受到气候变化的影响。鼓励植物研究人员和育种者解决加工污染物问题,或避免与食品行业的主要终端用户脱节的风险,并且在努力提高产量时不要忽视环境胁迫和作物管理对作物成分、品质和安全的影响。

相似文献

1
2
Impact of climate change on wheat grain composition and quality.
J Sci Food Agric. 2023 Apr;103(6):2745-2751. doi: 10.1002/jsfa.12289. Epub 2022 Nov 7.
3
Reducing the potential for processing contaminant formation in cereal products.
J Cereal Sci. 2014 May;59(3):382-392. doi: 10.1016/j.jcs.2013.11.002.
4
Climate-Nutrient-Crop Model: Novel Insights into Grain-Based Food Quality.
J Agric Food Chem. 2023 Jul 12;71(27):10228-10237. doi: 10.1021/acs.jafc.3c01076. Epub 2023 Jun 29.
5
Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes.
J Agric Food Chem. 2018 Aug 29;66(34):8887-8897. doi: 10.1021/acs.jafc.8b02924. Epub 2018 Aug 20.
6
QTLian breeding for climate resilience in cereals: progress and prospects.
Funct Integr Genomics. 2019 Sep;19(5):685-701. doi: 10.1007/s10142-019-00684-1. Epub 2019 May 16.
7
The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses.
Int J Mol Sci. 2021 Nov 30;22(23):12970. doi: 10.3390/ijms222312970.
9
Genetic Improvement of Cereals and Grain Legumes.
Genes (Basel). 2020 Oct 25;11(11):1255. doi: 10.3390/genes11111255.
10
Impacts of climate change on cereal farming in Tunisia: a panel ARDL-PMG approach.
Environ Sci Pollut Res Int. 2019 May;26(13):13334-13345. doi: 10.1007/s11356-019-04867-y. Epub 2019 Mar 22.

引用本文的文献

1
The Role of , , Genes, and Gluten Proteins in Regulating End-Use Quality in Wheat.
Int J Mol Sci. 2025 Sep 3;26(17):8565. doi: 10.3390/ijms26178565.
3
Odyssey of environmental and microbial interventions in maize crop improvement.
Front Plant Sci. 2025 Jan 9;15:1428475. doi: 10.3389/fpls.2024.1428475. eCollection 2024.
5
Biofortification of common bean ( L.) with iron and zinc: Achievements and challenges.
Food Energy Secur. 2022 Jun 30;12(2):e406. doi: 10.1002/fes3.406. eCollection 2023 Mar.
6
Constitutive basis of root system architecture: uncovering a promising trait for breeding nutrient- and drought-resilient crops.
aBIOTECH. 2023 Sep 15;4(4):315-331. doi: 10.1007/s42994-023-00112-w. eCollection 2023 Dec.
7
Salt Stress-Related Mechanisms in Leaves of the Wild Barley Generated from RNA-Seq Datasets.
Life (Basel). 2023 Jun 27;13(7):1454. doi: 10.3390/life13071454.
9
Sorghum Flour Application in Bread: Technological Challenges and Opportunities.
Foods. 2022 Aug 16;11(16):2466. doi: 10.3390/foods11162466.

本文引用的文献

2
Food security: the challenge of increasing wheat yield and the importance of not compromising food safety.
Ann Appl Biol. 2014 Jan;164(3):354-372. doi: 10.1111/aab.12108. Epub 2014 Feb 21.
3
Reducing the potential for processing contaminant formation in cereal products.
J Cereal Sci. 2014 May;59(3):382-392. doi: 10.1016/j.jcs.2013.11.002.
4
Reducing the reliance on nitrogen fertilizer for wheat production.
J Cereal Sci. 2014 May;59(3):276-283. doi: 10.1016/j.jcs.2013.12.001.
5
Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain.
Carbohydr Polym. 2014 Feb 15;102:557-65. doi: 10.1016/j.carbpol.2013.12.005. Epub 2013 Dec 11.
7
Effects of variety and nutrient availability on the acrylamide-forming potential of rye grain.
J Cereal Sci. 2013 May;57(3):463-470. doi: 10.1016/j.jcs.2013.02.001.
9
The acrylamide problem: a plant and agronomic science issue.
J Exp Bot. 2012 May;63(8):2841-51. doi: 10.1093/jxb/ers011. Epub 2012 Feb 16.
10
Overexpression of GCN2-type protein kinase in wheat has profound effects on free amino acid concentration and gene expression.
Plant Biotechnol J. 2012 Apr;10(3):328-40. doi: 10.1111/j.1467-7652.2011.00665.x. Epub 2011 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验