Bauer Markus, Stenner Max-Philipp, Friston Karl J, Dolan Raymond J
Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom, School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom, and
Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom, Department of Neurology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany.
J Neurosci. 2014 Nov 26;34(48):16117-25. doi: 10.1523/JNEUROSCI.3474-13.2014.
The brain adapts to dynamic environments by adjusting the attentional gain or precision afforded to salient and predictable sensory input. Previous research suggests that this involves the regulation of cortical excitability (reflected in prestimulus alpha oscillations) before stimulus onset that modulates subsequent stimulus processing (reflected in stimulus-bound gamma oscillations). We present two spatial attention experiments in humans, where we first replicate the classic finding of prestimulus attentional alpha modulation and poststimulus gamma modulation. In the second experiment, the task-relevant target was a stimulus change that occurred after stimulus onset. This enabled us to show that attentional alpha modulation reflects the predictability (precision) of an upcoming sensory target, rather than an attenuation of alpha activity induced by neuronal excitation related to stimulus onset. In particular, we show that the strength of attentional alpha modulations increases with the predictability of the anticipated sensory target, regardless of current afferent drive. By contrast, we show that the poststimulus attentional gamma enhancement is stimulus-bound and decreases when the subsequent target becomes more predictable. Hence, this pattern suggests that the strength of gamma oscillations is not merely a function of cortical excitability, but also depends on the relative mismatch of predictions and sensory evidence. Together, these findings support recent theoretical proposals for distinct roles of alpha/beta and gamma oscillations in hierarchical perceptual inference and predictive coding.
大脑通过调整赋予显著且可预测的感觉输入的注意力增益或精度来适应动态环境。先前的研究表明,这涉及在刺激开始前对皮质兴奋性(反映在刺激前的阿尔法振荡中)进行调节,从而调节随后的刺激处理(反映在与刺激相关的伽马振荡中)。我们在人类中进行了两项空间注意力实验,首先我们重复了刺激前注意力阿尔法调制和刺激后伽马调制的经典发现。在第二个实验中,与任务相关的目标是刺激开始后发生的刺激变化。这使我们能够表明,注意力阿尔法调制反映了即将到来的感觉目标的可预测性(精度),而不是与刺激开始相关的神经元兴奋所诱导的阿尔法活动的衰减。特别是,我们表明,注意力阿尔法调制的强度随着预期感觉目标的可预测性增加而增加,而与当前的传入驱动无关。相比之下,我们表明,刺激后的注意力伽马增强与刺激相关,并且当随后的目标变得更可预测时会减弱。因此,这种模式表明,伽马振荡的强度不仅是皮质兴奋性的函数,还取决于预测与感觉证据的相对不匹配。总之,这些发现支持了最近关于阿尔法/贝塔和伽马振荡在分层感知推理和预测编码中不同作用的理论提议。