Suppr超能文献

通讯:通过缓慢增长估计用于λ-局部提升伞形抽样(λ-LEUS)模拟的初始偏差势

Communication: estimating the initial biasing potential for λ-local-elevation umbrella-sampling (λ-LEUS) simulations via slow growth.

作者信息

Bieler Noah S, Hünenberger Philippe H

机构信息

Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland.

出版信息

J Chem Phys. 2014 Nov 28;141(20):201101. doi: 10.1063/1.4902361.

Abstract

In a recent article [Bieler et al., J. Chem. Theory Comput. 10, 3006-3022 (2014)], we introduced a combination of the λ-dynamics (λD) approach for calculating alchemical free-energy differences and of the local-elevation umbrella-sampling (LEUS) memory-based biasing method to enhance the sampling along the alchemical coordinate. The combined scheme, referred to as λ-LEUS, was applied to the perturbation of hydroquinone to benzene in water as a test system, and found to represent an improvement over thermodynamic integration (TI) in terms of sampling efficiency at equivalent accuracy. However, the preoptimization of the biasing potential required in the λ-LEUS method requires "filling up" all the basins in the potential of mean force. This introduces a non-productive pre-sampling time that is system-dependent, and generally exceeds the corresponding equilibration time in a TI calculation. In this letter, a remedy is proposed to this problem, termed the slow growth memory guessing (SGMG) approach. Instead of initializing the biasing potential to zero at the start of the preoptimization, an approximate potential of mean force is estimated from a short slow growth calculation, and its negative used to construct the initial memory. Considering the same test system as in the preceding article, it is shown that of the application of SGMG in λ-LEUS permits to reduce the preoptimization time by about a factor of four.

摘要

在最近的一篇文章[比勒等人,《化学理论与计算杂志》10,3006 - 3022(2014)]中,我们介绍了一种用于计算炼金术自由能差的λ动力学(λD)方法与基于局部提升伞形采样(LEUS)的基于记忆的偏差方法的组合,以增强沿炼金术坐标的采样。这种组合方案,称为λ - LEUS,被应用于对水中对苯二酚到苯的扰动这一测试系统,并发现在等效精度下,就采样效率而言,它比热力学积分(TI)有所改进。然而,λ - LEUS方法中所需的偏差势的预优化需要“填满”平均力势中的所有势阱。这引入了一个与系统相关的非生产性预采样时间,并且通常超过TI计算中的相应平衡时间。在这封信中,针对这个问题提出了一种补救方法,称为缓慢增长记忆猜测(SGMG)方法。在预优化开始时,不是将偏差势初始化为零,而是通过一个短的缓慢增长计算估计一个近似的平均力势,并将其负值用于构建初始记忆。考虑与前文相同的测试系统,结果表明在λ - LEUS中应用SGMG可以将预优化时间减少大约四倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验