Suppr超能文献

用于后生动物中通路相互作用推断的组织感知数据整合方法。

Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms.

作者信息

Park Christopher Y, Krishnan Arjun, Zhu Qian, Wong Aaron K, Lee Young-Suk, Troyanskaya Olga G

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA and Simons Center for Data Analysis, Simons Foundation, New York, NY, 10010, USA Department of Computer Science, Princeton University, Princeton, NJ 08544, USA, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA and Simons Center for Data Analysis, Simons Foundation, New York, NY, 10010, USA.

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA and Simons Center for Data Analysis, Simons Foundation, New York, NY, 10010, USA.

出版信息

Bioinformatics. 2015 Apr 1;31(7):1093-101. doi: 10.1093/bioinformatics/btu786. Epub 2014 Nov 26.

Abstract

MOTIVATION

Leveraging the large compendium of genomic data to predict biomedical pathways and specific mechanisms of protein interactions genome-wide in metazoan organisms has been challenging. In contrast to unicellular organisms, biological and technical variation originating from diverse tissues and cell-lineages is often the largest source of variation in metazoan data compendia. Therefore, a new computational strategy accounting for the tissue heterogeneity in the functional genomic data is needed to accurately translate the vast amount of human genomic data into specific interaction-level hypotheses.

RESULTS

We developed an integrated, scalable strategy for inferring multiple human gene interaction types that takes advantage of data from diverse tissue and cell-lineage origins. Our approach specifically predicts both the presence of a functional association and also the most likely interaction type among human genes or its protein products on a whole-genome scale. We demonstrate that directly incorporating tissue contextual information improves the accuracy of our predictions, and further, that such genome-wide results can be used to significantly refine regulatory interactions from primary experimental datasets (e.g. ChIP-Seq, mass spectrometry).

AVAILABILITY AND IMPLEMENTATION

An interactive website hosting all of our interaction predictions is publically available at http://pathwaynet.princeton.edu. Software was implemented using the open-source Sleipnir library, which is available for download at https://bitbucket.org/libsleipnir/libsleipnir.bitbucket.org.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

利用大量基因组数据来预测后生动物全基因组范围内的生物医学途径和蛋白质相互作用的特定机制具有挑战性。与单细胞生物不同,来自不同组织和细胞谱系的生物学和技术变异通常是后生动物数据汇编中最大的变异来源。因此,需要一种新的计算策略来考虑功能基因组数据中的组织异质性,以便将大量人类基因组数据准确地转化为特定的相互作用水平假设。

结果

我们开发了一种集成的、可扩展的策略,用于推断多种人类基因相互作用类型,该策略利用了来自不同组织和细胞谱系来源的数据。我们的方法专门预测人类基因或其蛋白质产物之间功能关联的存在以及全基因组范围内最可能的相互作用类型。我们证明,直接纳入组织背景信息可提高我们预测的准确性,而且,这种全基因组结果可用于显著完善来自主要实验数据集(如ChIP-Seq、质谱)的调控相互作用。

可用性和实现方式

一个托管我们所有相互作用预测的交互式网站可在http://pathwaynet.princeton.edu上公开获取。软件使用开源的Sleipnir库实现,可在https://bitbucket.org/libsleipnir/libsleipnir.bitbucket.org下载。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms.
Bioinformatics. 2015 Apr 1;31(7):1093-101. doi: 10.1093/bioinformatics/btu786. Epub 2014 Nov 26.
2
Detailing regulatory networks through large scale data integration.
Bioinformatics. 2009 Dec 15;25(24):3267-74. doi: 10.1093/bioinformatics/btp588. Epub 2009 Oct 13.
3
CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data.
Bioinformatics. 2014 Apr 15;30(8):1190-1192. doi: 10.1093/bioinformatics/btt761. Epub 2014 Jan 2.
4
Integrated genome browser: visual analytics platform for genomics.
Bioinformatics. 2016 Jul 15;32(14):2089-95. doi: 10.1093/bioinformatics/btw069. Epub 2016 Mar 16.
5
Context-sensitive data integration and prediction of biological networks.
Bioinformatics. 2007 Sep 1;23(17):2322-30. doi: 10.1093/bioinformatics/btm332. Epub 2007 Jun 28.
6
The Sleipnir library for computational functional genomics.
Bioinformatics. 2008 Jul 1;24(13):1559-61. doi: 10.1093/bioinformatics/btn237. Epub 2008 May 21.
7
BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
Bioinformatics. 2015 Sep 1;31(17):2852-9. doi: 10.1093/bioinformatics/btv294. Epub 2015 May 7.
8
DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
Bioinformatics. 2017 Apr 1;33(7):956-963. doi: 10.1093/bioinformatics/btw740.
9
A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
Bioinformatics. 2015 Jun 15;31(12):1889-96. doi: 10.1093/bioinformatics/btv094. Epub 2015 Feb 13.
10
Biological Network Inference and analysis using SEBINI and CABIN.
Methods Mol Biol. 2009;541:551-76. doi: 10.1007/978-1-59745-243-4_24.

引用本文的文献

1
FNDC1 is a myokine that promotes myogenesis and muscle regeneration.
EMBO J. 2025 Jan;44(1):30-53. doi: 10.1038/s44318-024-00285-0. Epub 2024 Nov 20.
2
High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity.
Nat Med. 2024 Nov;30(11):3196-3208. doi: 10.1038/s41591-024-03224-y. Epub 2024 Sep 20.
3
O-GlcNAcylation of MITF regulates its activity and CDK4/6 inhibitor resistance in breast cancer.
Nat Commun. 2024 Jul 3;15(1):5597. doi: 10.1038/s41467-024-49875-w.
4
Multimodal single-cell analyses reveal mechanisms of perianal fistula in diverse patients with Crohn's disease.
Med. 2024 Aug 9;5(8):886-908.e11. doi: 10.1016/j.medj.2024.03.021. Epub 2024 Apr 24.
5
MEMMAL: A tool for expanding large-scale mechanistic models with machine learned associations and big datasets.
Front Syst Biol. 2023;3. doi: 10.3389/fsysb.2023.1099413. Epub 2023 Mar 9.
6
-GlcNAcylation of MITF regulates its activity and CDK4/6 inhibitor resistance in breast cancer.
Res Sq. 2023 Oct 3:rs.3.rs-3377962. doi: 10.21203/rs.3.rs-3377962/v1.
7
5-Iodotubercidin sensitizes cells to RIPK1-dependent necroptosis by interfering with NFκB signaling.
Cell Death Discov. 2023 Jul 26;9(1):262. doi: 10.1038/s41420-023-01576-x.
8
MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms.
Nat Commun. 2023 Jul 6;14(1):3991. doi: 10.1038/s41467-023-39729-2.
9
And-1 Coordinates with the FANCM Complex to Regulate Fanconi Anemia Signaling and Cisplatin Resistance.
Cancer Res. 2022 Sep 16;82(18):3249-3262. doi: 10.1158/0008-5472.CAN-22-0769.

本文引用的文献

1
FunCoup 3.0: database of genome-wide functional coupling networks.
Nucleic Acids Res. 2014 Jan;42(Database issue):D380-8. doi: 10.1093/nar/gkt984. Epub 2013 Oct 31.
2
A compendium of RNA-binding motifs for decoding gene regulation.
Nature. 2013 Jul 11;499(7457):172-7. doi: 10.1038/nature12311.
3
Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12414-9. doi: 10.1073/pnas.1220674110. Epub 2013 Jul 8.
4
Understanding the regulatory and transcriptional complexity of the genome through structure.
Genome Res. 2013 Jul;23(7):1081-8. doi: 10.1101/gr.156612.113.
5
The Genotype-Tissue Expression (GTEx) project.
Nat Genet. 2013 Jun;45(6):580-5. doi: 10.1038/ng.2653.
6
Mapping functional transcription factor networks from gene expression data.
Genome Res. 2013 Aug;23(8):1319-28. doi: 10.1101/gr.150904.112. Epub 2013 May 1.
7
Construction of human activity-based phosphorylation networks.
Mol Syst Biol. 2013;9:655. doi: 10.1038/msb.2013.12.
8
Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.
PLoS Comput Biol. 2013;9(3):e1002957. doi: 10.1371/journal.pcbi.1002957. Epub 2013 Mar 14.
9
A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility.
Cell. 2013 Feb 14;152(4):909-22. doi: 10.1016/j.cell.2013.01.030. Epub 2013 Feb 8.
10
PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins.
Nucleic Acids Res. 2013 Jan;41(Database issue):D306-11. doi: 10.1093/nar/gks1230. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验