Suppr超能文献

考虑时间相依协变量,对驾驶时长和休息时间对卡车司机的安全影响进行建模。

Modeling the safety impacts of driving hours and rest breaks on truck drivers considering time-dependent covariates.

作者信息

Chen Chen, Xie Yuanchang

机构信息

University of Massachusetts Lowell, Department of Civil and Environmental Engineering, 108 Falmouth Hall, One University Avenue, Lowell, MA 01854, USA.

出版信息

J Safety Res. 2014 Dec;51:57-63. doi: 10.1016/j.jsr.2014.09.006. Epub 2014 Oct 1.

Abstract

INTRODUCTION

Driving hours and rest breaks are closely related to driver fatigue, which is a major contributor to truck crashes. This study investigates the effects of driving hours and rest breaks on commercial truck driver safety.

METHOD

A discrete-time logistic regression model is used to evaluate the crash odds ratios of driving hours and rest breaks. Driving time is divided into 11 one hour intervals. These intervals and rest breaks are modeled as dummy variables. In addition, a Cox proportional hazards regression model with time-dependent covariates is used to assess the transient effects of rest breaks, which consists of a fixed effect and a variable effect.

RESULTS

Data collected from two national truckload carriers in 2009 and 2010 are used. The discrete-time logistic regression result indicates that only the crash odds ratio of the 11th driving hour is statistically significant. Taking one, two, and three rest breaks can reduce drivers' crash odds by 68%, 83%, and 85%, respectively, compared to drivers who did not take any rest breaks. The Cox regression result shows clear transient effects for rest breaks. It also suggests that drivers may need some time to adjust themselves to normal driving tasks after a rest break. Overall, the third rest break's safety benefit is very limited based on the results of both models.

PRACTICAL APPLICATIONS

The findings of this research can help policy makers better understand the impact of driving time and rest breaks and develop more effective rules to improve commercial truck safety.

摘要

引言

驾驶时长和休息时间与驾驶员疲劳密切相关,而驾驶员疲劳是导致卡车事故的主要因素。本研究调查了驾驶时长和休息时间对商用卡车驾驶员安全的影响。

方法

使用离散时间逻辑回归模型评估驾驶时长和休息时间的碰撞比值比。驾驶时间分为11个一小时的时间段。这些时间段和休息时间被建模为虚拟变量。此外,使用具有时间依存协变量的Cox比例风险回归模型评估休息时间的瞬时效应,该模型由固定效应和可变效应组成。

结果

使用了2009年和2010年从两家全国性整车运输公司收集的数据。离散时间逻辑回归结果表明,只有第11个驾驶小时的碰撞比值比具有统计学意义。与未休息的驾驶员相比,休息一次、两次和三次可分别将驾驶员的碰撞几率降低68%、83%和85%。Cox回归结果显示了休息时间明显的瞬时效应。这也表明驾驶员在休息后可能需要一些时间来调整自己以适应正常驾驶任务。总体而言,基于两个模型的结果,第三次休息的安全效益非常有限。

实际应用

本研究结果可帮助政策制定者更好地理解驾驶时间和休息时间的影响,并制定更有效的规则以提高商用卡车安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验