Suppr超能文献

相似文献

1
The bacterial nucleoid: nature, dynamics and sister segregation.
Curr Opin Microbiol. 2014 Dec;22:127-37. doi: 10.1016/j.mib.2014.10.001.
2
Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2765-70. doi: 10.1073/pnas.1019593108. Epub 2011 Jan 31.
4
Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells.
Cell. 2013 May 9;153(4):882-95. doi: 10.1016/j.cell.2013.04.006. Epub 2013 Apr 25.
5
The bacterial nucleoid: a highly organized and dynamic structure.
J Cell Biochem. 2005 Oct 15;96(3):506-21. doi: 10.1002/jcb.20519.
6
Structure and segregation of the bacterial nucleoid.
Curr Opin Genet Dev. 2004 Apr;14(2):126-32. doi: 10.1016/j.gde.2004.01.006.
7
Nucleoid-mediated positioning and transport in bacteria.
Curr Genet. 2020 Apr;66(2):279-291. doi: 10.1007/s00294-019-01041-2. Epub 2019 Nov 5.
8
FtsK, a literate chromosome segregation machine.
Mol Microbiol. 2007 Jun;64(6):1434-41. doi: 10.1111/j.1365-2958.2007.05755.x. Epub 2007 May 18.
9
Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli.
Genes Dev. 2005 Oct 1;19(19):2367-77. doi: 10.1101/gad.345305.

引用本文的文献

1
Elementary 3D organization of active and silenced E. coli genome.
Nature. 2025 Aug 13. doi: 10.1038/s41586-025-09396-y.
2
Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma.
J Bacteriol. 2024 Mar 21;206(3):e0021123. doi: 10.1128/jb.00211-23. Epub 2024 Feb 15.
3
Transcription-induced domains form the elementary constraining building blocks of bacterial chromosomes.
Nat Struct Mol Biol. 2024 Mar;31(3):489-497. doi: 10.1038/s41594-023-01178-2. Epub 2024 Jan 4.
4
DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling.
Front Microbiol. 2023 Oct 30;14:1192831. doi: 10.3389/fmicb.2023.1192831. eCollection 2023.
5
6
DNA Segregation in Enterobacteria.
EcoSal Plus. 2023 Dec 12;11(1):eesp00382020. doi: 10.1128/ecosalplus.esp-0038-2020. Epub 2023 May 9.
7
Cell wall damage increases macromolecular crowding effects in the cytoplasm.
iScience. 2023 Mar 9;26(4):106367. doi: 10.1016/j.isci.2023.106367. eCollection 2023 Apr 21.
8
DNA supercoiling-induced shapes alter minicircle hydrodynamic properties.
Nucleic Acids Res. 2023 May 8;51(8):4027-4042. doi: 10.1093/nar/gkad183.
10
DNA supercoiling-induced shapes alter minicircle hydrodynamic properties.
bioRxiv. 2023 Jan 5:2023.01.04.522747. doi: 10.1101/2023.01.04.522747.

本文引用的文献

1
Bacillus subtilis chromosome organization oscillates between two distinct patterns.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12877-82. doi: 10.1073/pnas.1407461111. Epub 2014 Jul 28.
2
Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11413-8. doi: 10.1073/pnas.1411558111. Epub 2014 Jul 23.
3
3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions.
Cell. 2014 Jul 17;158(2):339-352. doi: 10.1016/j.cell.2014.05.036. Epub 2014 Jul 3.
4
Persistent super-diffusive motion of Escherichia coli chromosomal loci.
Nat Commun. 2014 May 30;5:3854. doi: 10.1038/ncomms4854.
5
Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation.
Elife. 2014 May 23;3:e02758. doi: 10.7554/eLife.02758.
6
A propagating ATPase gradient drives transport of surface-confined cellular cargo.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4880-5. doi: 10.1073/pnas.1401025111. Epub 2014 Feb 24.
8
Molecular biology. Chromosome capture brings it all together.
Science. 2013 Nov 22;342(6161):940-1. doi: 10.1126/science.1247514.
9
Organization of the mitotic chromosome.
Science. 2013 Nov 22;342(6161):948-53. doi: 10.1126/science.1236083. Epub 2013 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验