Suppr超能文献

胰腺内的可塑性与去分化:发育、稳态与疾病

Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease.

作者信息

Puri Sapna, Folias Alexandra E, Hebrok Matthias

机构信息

Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.

Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

Cell Stem Cell. 2015 Jan 8;16(1):18-31. doi: 10.1016/j.stem.2014.11.001. Epub 2014 Nov 20.

Abstract

Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we discuss the changes occurring in cellular states upon fate modulation and address how our understanding of the nature of this fluidity is shaping therapeutic approaches to pancreatic disorders such as diabetes and cancer.

摘要

细胞身份由调节器官发生和组织稳态的遗传、表观遗传和环境因素决定。尽管命运潜能上的一些灵活性对整体器官健康有益,但细胞身份的剧烈变化可能会带来灾难性后果。胰腺生物学领域的新数据正在修正当前关于在稳态和应激条件下细胞身份如何由发育和环境线索塑造的观点。在这里,我们讨论命运调节时细胞状态发生的变化,并探讨我们对这种流动性本质的理解如何塑造针对糖尿病和癌症等胰腺疾病的治疗方法。

相似文献

1
Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease.
Cell Stem Cell. 2015 Jan 8;16(1):18-31. doi: 10.1016/j.stem.2014.11.001. Epub 2014 Nov 20.
2
Transcription factor regulation of pancreatic organogenesis, differentiation and maturation.
Islets. 2016;8(1):13-34. doi: 10.1080/19382014.2015.1075687. Epub 2015 Sep 24.
3
Transcriptional control of mammalian pancreas organogenesis.
Cell Mol Life Sci. 2014 Jul;71(13):2383-402. doi: 10.1007/s00018-013-1510-2. Epub 2013 Nov 13.
4
Three-dimensional pancreas organogenesis models.
Diabetes Obes Metab. 2016 Sep;18 Suppl 1(Suppl 1):33-40. doi: 10.1111/dom.12720.
5
Cellular plasticity within the pancreas--lessons learned from development.
Dev Cell. 2010 Mar 16;18(3):342-56. doi: 10.1016/j.devcel.2010.02.005.
6
Implication of epigenetics in pancreas development and disease.
Best Pract Res Clin Endocrinol Metab. 2015 Dec;29(6):883-98. doi: 10.1016/j.beem.2015.10.010. Epub 2015 Oct 23.
7
Deconstructing pancreas developmental biology.
Cold Spring Harb Perspect Biol. 2012 Jun 1;4(6):a012401. doi: 10.1101/cshperspect.a012401.
8
Pancreas organogenesis: from lineage determination to morphogenesis.
Annu Rev Cell Dev Biol. 2013;29:81-105. doi: 10.1146/annurev-cellbio-101512-122405. Epub 2013 Jul 31.
9
Fate mapping of ptf1a-expressing cells during pancreatic organogenesis and regeneration in zebrafish.
Dev Dyn. 2015 Jun;244(6):724-35. doi: 10.1002/dvdy.24271. Epub 2015 May 22.
10
Pancreatic development and disease.
Gastroenterology. 2007 Feb;132(2):745-62. doi: 10.1053/j.gastro.2006.12.054.

引用本文的文献

1
Small molecules enhance the high-efficiency generation of pancreatic ductal organoids.
Acta Biochim Biophys Sin (Shanghai). 2024 Dec 5;57(7):1184-1194. doi: 10.3724/abbs.2024218.
2
Identification and analysis of pancreatic intraepithelial neoplasia: opportunities and challenges.
Front Endocrinol (Lausanne). 2025 Jan 7;15:1401829. doi: 10.3389/fendo.2024.1401829. eCollection 2024.
3
Rescue of non-healing, degenerative salivary glands by cholinergic-calcium signaling.
bioRxiv. 2025 Feb 28:2024.12.31.630834. doi: 10.1101/2024.12.31.630834.
4
Ion channels in acinar cells in acute pancreatitis: crosstalk of calcium, iron, and copper signals.
Front Immunol. 2024 Nov 13;15:1444272. doi: 10.3389/fimmu.2024.1444272. eCollection 2024.
6
Predictive Prioritization of Enhancers Associated with Pancreas Disease Risk.
bioRxiv. 2024 Sep 13:2024.09.07.611794. doi: 10.1101/2024.09.07.611794.
7
FRA1 controls acinar cell plasticity during murine Kras-induced pancreatic acinar to ductal metaplasia.
Dev Cell. 2024 Nov 18;59(22):3025-3042.e7. doi: 10.1016/j.devcel.2024.07.021. Epub 2024 Aug 22.
8
Pancreatic Diseases: Genetics and Modeling Using Human Pluripotent Stem Cells.
Int J Stem Cells. 2024 Aug 30;17(3):253-269. doi: 10.15283/ijsc24036. Epub 2024 Apr 26.
10
Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity.
bioRxiv. 2024 Nov 17:2024.02.16.580675. doi: 10.1101/2024.02.16.580675.

本文引用的文献

2
Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers.
Nature. 2014 Oct 23;514(7523):503-7. doi: 10.1038/nature13633. Epub 2014 Aug 20.
3
Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.
Cell Stem Cell. 2014 Aug 7;15(2):139-53. doi: 10.1016/j.stem.2014.06.019.
4
Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.
PLoS One. 2014 Jul 10;9(7):e102125. doi: 10.1371/journal.pone.0102125. eCollection 2014.
5
Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy.
Cell Metab. 2014 May 6;19(5):872-82. doi: 10.1016/j.cmet.2014.03.010. Epub 2014 Apr 17.
7
Could microRNAs contribute to the maintenance of β cell identity?
Trends Endocrinol Metab. 2014 Jun;25(6):285-92. doi: 10.1016/j.tem.2014.01.003. Epub 2014 Mar 18.
9
Pdx1 maintains β cell identity and function by repressing an α cell program.
Cell Metab. 2014 Feb 4;19(2):259-71. doi: 10.1016/j.cmet.2013.12.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验